Advertisement

Precise set of tensor analyzing power T20 data for the deuteron-proton breakup at 130 MeV

  • E. StephanEmail author
  • St. Kistryn
  • A. Biegun
  • K. Bodek
  • I. Ciepał
  • A. Deltuva
  • E. Epelbaum
  • A. C. Fonseca
  • J. Golak
  • N. Kalantar-Nayestanaki
  • H. Kamada
  • M. Kiš
  • B. Kłos
  • A. Kozela
  • M. Mahjour-Shafiei
  • A. Micherdzińska
  • A. Nogga
  • R. Skibiński
  • R. Sworst
  • H. Witała
  • J. Zejma
  • W. Zipper
Regular Article - Experimental Physics

Abstract

High-precision tensor analyzing power T20 data of the 1H (d,pp)n reaction at 130MeV beam energy have been determined for 81 kinematical configurations. They are compared to theoretical predictions based on various approaches to describe the dynamics of the three-nucleon (3N) system. The calculations are performed using modern realistic nucleon-nucleon potentials combined with three-nucleon force (3NF) models or with an effective 3NF resulting from the explicit treatment of the \( \Delta\) -isobar in coupled-channels (CC) calculations. Alternatively, the framework of chiral perturbation theory is used to generate consistent two-nucleon and three-nucleon potentials at the currently numerically attainable order. Results of the CC calculations with the \( \Delta\) degrees of freedom and including long-range Coulomb force are also shown. In general all predictions are consistent with each other and describe the experimental T20 results quite well. In a few configurations small inconsistencies between the data and the results of all approaches are observed. Predicted effects of the 3NF are not big and in most cases do not lead to an improved description of the data. The Coulomb force effects are also small in size and often opposite to the effects of TM99 3NF.

PACS

21.30.-x Nuclear forces 21.45.-v Few-body systems 21.45.Ff Three-nucleon forces 25.10.+s Nuclear reactions involving few-nucleon systems 

References

  1. 1.
    A. Nogga et al., Phys. Rev. C 67, 034004 (2003).CrossRefADSGoogle Scholar
  2. 2.
    W. Glöckle et al., Phys. Rep. 274, 107 (1996) and references therein.CrossRefADSGoogle Scholar
  3. 3.
    H. Witala, W. Glöckle, D. Huber, J. Golak, H. Kamada, Phys. Rev. Lett. 81, 1183 (1998).Google Scholar
  4. 4.
    H. Sakai et al., Phys. Rev. Lett. 84, 5288 (2000).CrossRefADSGoogle Scholar
  5. 5.
    K. Hatanaka et al., Phys. Rev. C 66, 044002 (2002).CrossRefADSGoogle Scholar
  6. 6.
    P. Mermod et al., Phys. Lett. B 597, 243 (2004).CrossRefADSGoogle Scholar
  7. 7.
    K. Sekiguchi et al., Phys. Rev. C 70, 014001 (2004).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    K. Ermisch et al., Phys. Rev. Lett. 86, 5862 (2001); K. Ermisch et al., Phys. Rev. C 68, 051001 (2003); K. Ermisch et al., Phys. Rev. C 71, 064004 (2005).CrossRefADSGoogle Scholar
  9. 9.
    B. von Przewoski et al., Phys. Rev. C 74, 064003 (2006).CrossRefADSGoogle Scholar
  10. 10.
    H.R. Amir-Ahmadi et al., Phys. Rev. C 75, 041001(R) (2007).CrossRefADSGoogle Scholar
  11. 11.
    H. Mardanpour et al., Eur. Phys. J. 31, 383 (2007).CrossRefADSGoogle Scholar
  12. 12.
    A. Deltuva, K. Chmielewski, P.U. Sauer, Phys. Rev. C 67, 034001 (2003); A. Deltuva, R. Machleidt, P.U. Sauer, Phys. Rev. C 68, 024005 (2003).CrossRefADSGoogle Scholar
  13. 13.
    A. Deltuva, A.C. Fonseca, P.U. Sauer, Phys. Rev. C 72, 054004 (2005); A. Deltuva, A.C. Fonseca, P.U. Sauer, Phys. Rev. C 73, 057001 (2006).CrossRefADSGoogle Scholar
  14. 14.
    E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).CrossRefADSGoogle Scholar
  15. 15.
    H. Witala, J. Golak, R. Skibinski, Phys. Lett. B 634, 374 (2006); R. Skibinski, H. Witala, J. Golak, Eur. Phys. J. A 30, 369 (2006).CrossRefADSGoogle Scholar
  16. 16.
    St. Kistryn et al., Nucl. Phys. A 548, 49 (1992); J. Balewski et al., Nucl. Phys. A 581, 131 (1995).CrossRefADSGoogle Scholar
  17. 17.
    M. Allet et al., Phys. Rev. C 50, 602 (1994); M. Allet et al., Phys. Lett. B 376, 255 (1996).CrossRefADSGoogle Scholar
  18. 18.
    J. Zejma et al., Phys. Rev. C 55, 42 (1997).CrossRefADSGoogle Scholar
  19. 19.
    K. Bodek et al., Few-Body Syst. 30, 65 (2001).CrossRefADSGoogle Scholar
  20. 20.
    St. Kistryn et al., Phys. Rev. C 68, 054004 (2003); St. Kistryn et al., Phys. Rev. C 72, 044006 (2005).CrossRefADSGoogle Scholar
  21. 21.
    St. Kistryn et al., Phys. Lett. B 641, 23 (2006).CrossRefADSGoogle Scholar
  22. 22.
    G.G. Ohlsen, R.E. Brown, F.D. Correll, R.A. Hardekopf, Nucl. Instrum. Methods 179, 283 (1981).CrossRefADSGoogle Scholar
  23. 23.
    H.R. Kremers, A.G. Drentje, in Polarized Gas Targets and Polarized Beams, AIP Conf. Proc. 421, 502 (1997).Google Scholar
  24. 24.
    N. Kalantar-Nayestanaki, J. Mulder, J. Zijlstra, Nucl. Instrum. Methods A 417, 215 (1998).CrossRefGoogle Scholar
  25. 25.
    N. Kalantar-Nayestanaki et al., Nucl. Instrum. Methods A 444, 591 (2000).CrossRefADSGoogle Scholar
  26. 26.
    St. Kistryn, C.P. Bee, P. Eberhardt, Proceedings of the 6th International Conference on Electronics for Particle Physics, LeCroy Corporation, Chestnut Ridge New York, May 28–29, 1997, edited by G.J. Blanar, R.L. Sumner (LeCroy Research Systems, New York, 1997).Google Scholar
  27. 27.
    H.G. Essel, N. Kurz, IEEE Trans. Nucl. Sci. 47, 337 (2000).CrossRefADSGoogle Scholar
  28. 28.
    E. Stephan et al., Phys. Rev. C 76, 57001 (2007).CrossRefADSGoogle Scholar
  29. 29.
    R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996); R. Machleidt, Phys. Rev. C 63, 024001 (2001).CrossRefADSGoogle Scholar
  30. 30.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).CrossRefADSGoogle Scholar
  31. 31.
    V.G.J. Stoks et al., Phys. Rev. C 49, 2950 (1994).CrossRefADSGoogle Scholar
  32. 32.
    J. Fujita, H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957).zbMATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    A. Nogga, D. Hüber, H. Kamada, W. Glöckle, Phys. Lett. B 409, 19 (1997).CrossRefADSGoogle Scholar
  34. 34.
    J.L. Friar, D. Hüber, U. van Kolck, Phys. Rev. C 59, 53 (1999).CrossRefADSGoogle Scholar
  35. 35.
    S.A. Coon, H.K. Han, Few-Body Syst. 30, 131 (2001).CrossRefADSGoogle Scholar
  36. 36.
    D. Hüber, H. Kamada, H. Witala, W. Glöckle, Acta Phys. Pol. B 28, 1677 (1997).Google Scholar
  37. 37.
    R. Skibinski, J. Golak, H. Witala, W. Glöckle, Eur. Phys. J. A 40, 215 (2009); H. Witala, R. Skibinski, J. Golak, W. Glöckle, arXiv:nucl-th/0903.1522.CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. Stephan
    • 1
    Email author
  • St. Kistryn
    • 2
  • A. Biegun
    • 1
    • 3
  • K. Bodek
    • 2
  • I. Ciepał
    • 2
  • A. Deltuva
    • 4
  • E. Epelbaum
    • 5
  • A. C. Fonseca
    • 4
  • J. Golak
    • 2
  • N. Kalantar-Nayestanaki
    • 3
  • H. Kamada
    • 6
  • M. Kiš
    • 3
  • B. Kłos
    • 1
  • A. Kozela
    • 7
  • M. Mahjour-Shafiei
    • 3
  • A. Micherdzińska
    • 1
  • A. Nogga
    • 5
  • R. Skibiński
    • 2
  • R. Sworst
    • 2
  • H. Witała
    • 2
  • J. Zejma
    • 2
  • W. Zipper
    • 1
  1. 1.Institute of PhysicsUniversity of SilesiaKatowicePoland
  2. 2.Institute of PhysicsJagiellonian UniversityKrakówPoland
  3. 3.Kernfysisch Versneller InstituutAA GroningenThe Netherlands
  4. 4.Centro de Fisica Nuclear da Universidade de LisboaLisboaPortugal
  5. 5.Institut für Kernphysik (Theorie)Forschungszentrum JülichJülichGermany
  6. 6.Department of PhysicsKyushu Institute of TechnologyKyushuJapan
  7. 7.Institute of Nuclear PhysicsPANKrakówPoland

Personalised recommendations