The role of nucleon recoil in low-energy antikaon-deuteron scattering

Regular Article - Theoretical Physics

Abstract

The effect of the nucleon recoil for the antikaon-deuteron scattering is investigated in the framework of the effective field theory. In particular, we concentrate on the calculation of the nucleon recoil effect for the double-scattering process. It is shown that the leading correction to the static term that emerges at order \( \xi^{{1/2}}_{}\) with \( \xi\) = MK/mN vanishes due to a complete cancellation of individually large contributions. The resulting recoil effect in this process is found to be of the order of 10-15% as compared to the static term. We also briefly discuss the application of the method in the calculations of the multiple-scattering diagrams.

PACS

36.10.Gv Mesonic, hyperonic and antiprotonic atoms and molecules 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) 13.75.Jz Kaon-baryon interactions 

References

  1. 1.
    S.R. Beane et al., Nucl. Phys. A 720, 399 (2003) [hepph/0206219]; U.-G. Meissner et al., Phys. Lett. B 639, 478 (2006) [nucl-th/0512035]; V. Lensky et al., Phys. Lett. B 648, 46 (2007) [nucl-th/0608042]; V. Baru et al., Phys. Lett. B 659, 184 (2008) [arXiv:0706.4023 [nucl-th]]; V. Baru et al., in Proceedings of MENU 2007, Julich, Germany, Sep 2007, edited by H. Machner, S. Krewald, eConfC070910, 127 (2007) [arXiv:0711.2743 [nucl-th]].CrossRefADSGoogle Scholar
  2. 2.
    J. Gasser, V.E. Lyubovitskij, A. Rusetsky, Phys. Rep. 456, 167 (2008) [arXiv:0711.3522 [hep-ph]].CrossRefADSGoogle Scholar
  3. 3.
    J. Gasser, V.E. Lyubovitskij, A. Rusetsky, arXiv:0903.0257 [hep-ph].Google Scholar
  4. 4.
    DEAR Collaboration (G. Beer et al.), Phys. Rev. Lett. 94, 212302 (2005); J. Zmeskal et al., Nucl. Phys. A 754, 369 (2005); C. Curceanu-Petrascu et al., Eur. Phys. J. A 31, 537 (2007); V. Lucherini, Int. J. Mod. Phys. A 22, 221 (2007).CrossRefGoogle Scholar
  5. 5.
    S. Deser, M.L. Goldberger, K. Baumann, W. Thirring, Phys. Rev. 96, 774 (1954).CrossRefADSGoogle Scholar
  6. 6.
    U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C 35, 349 (2004) [hep-ph/0402261].CrossRefADSGoogle Scholar
  7. 7.
    U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C 47, 473 (2006) [nucl-th/0603029].CrossRefADSGoogle Scholar
  8. 8.
    A. Cieply, J. Smejkal, Eur. Phys. J. A 34, 237 (2007) [arXiv:0711.4928 [hep-ph]].CrossRefADSGoogle Scholar
  9. 9.
    N. Kaiser, P.B. Siegel, W. Weise, Nucl. Phys. A 594, 325 (1995) [arXiv:nucl-th/9505043]; E. Oset, A. Ramos, Nucl. Phys. A 635, 99 (1998) [arXiv:nucl-th/9711022]; B. Krippa, Phys. Rev. C 58, 1333 (1998) [arXiv:hepph/9803332]; J.A. Oller, U.-G. Meissner, Phys. Lett. B 500, 263 (2001) [arXiv:hep-ph/0011146]; J.A. Oller, J. Prades, M. Verbeni, Phys. Rev. Lett. 95, 172502 (2005) [arXiv:hepph/0508081]; B. Borasoy, R. Nissler, W. Weise, Phys. Rev. Lett. 94, 213401 (2005) [arXiv:hep-ph/0410305]; B. Borasoy, U.-G. Meissner, R. Nissler, Phys. Rev. C 74, 055201 (2006) [hep-ph/0606108].CrossRefADSGoogle Scholar
  10. 10.
    M. Lage, U.-G. Meissner, A. Rusetsky, arXiv:0905.0069 [hep-lat].Google Scholar
  11. 11.
    R.H. Dalitz, S.F. Tuan, Ann. Phys. 8, 100 (1959); 10, 307 (1960).CrossRefADSGoogle Scholar
  12. 12.
    L.H. Schick, B.F. Gibson, Z. Phys. A 288, 307 (1978).CrossRefGoogle Scholar
  13. 13.
    G. Toker, A. Gal, J.M. Eisenberg, Nucl. Phys. A 362, 405 (1981).CrossRefADSGoogle Scholar
  14. 14.
    A. Deloff, Phys. Rev. C 61, 024004 (2000).CrossRefADSGoogle Scholar
  15. 15.
    A. Bahaoui, C. Fayard, T. Mizutani, B. Saghai, Phys. Rev. C 68, 064001 (2003) [arXiv:nucl-th/0307067].CrossRefADSGoogle Scholar
  16. 16.
    S.S. Kamalov, E. Oset, A. Ramos, Nucl. Phys. A 690, 494 (2001) [nucl-th/0010054].CrossRefADSGoogle Scholar
  17. 17.
    R. Chand, R.H. Dalitz, Ann. Phys. (N.Y.) 20, 1 (1962).CrossRefADSGoogle Scholar
  18. 18.
    A. Gal, Int. J. Mod. Phys. A 22, 226 (2007) [nuclth/0607067].CrossRefADSGoogle Scholar
  19. 19.
    S.R. Beane, M.J. Savage, Nucl. Phys. A 717, 104 (2003) [arXiv:nucl-th/0204046].CrossRefADSGoogle Scholar
  20. 20.
    P.F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002) [arXiv:nucl-th/0203055].CrossRefADSGoogle Scholar
  21. 21.
    E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006) [arXiv:nucl-th/0509032].CrossRefADSGoogle Scholar
  22. 22.
    E. Epelbaum, H.W. Hammer, U.-G. Meissner, arXiv: 0811.1338 [nucl-th].Google Scholar
  23. 23.
    V.R. Veirs, R.A. Burnstein, Phys. Rev. D 1, 1883 (1970).CrossRefADSGoogle Scholar
  24. 24.
    P. Hauser et al., Phys. Rev. C 58, 1869 (1998).CrossRefADSGoogle Scholar
  25. 25.
    V.M. Kolybasov, V.G. Ksenzov, Zh. Eksp. Teor. Fiz. 71, 13 (1976); O.D. Dalkarov, V.M. Kolybasov, V.G. Ksenzov, Nucl. Phys. A 397, 498 (1983).Google Scholar
  26. 26.
    G. Fäldt, Phys. Scr. 16, 81 (1977).CrossRefADSGoogle Scholar
  27. 27.
    V. Baru et al., Phys. Lett. B 589, 118 (2004) [nuclth/0402027].CrossRefADSGoogle Scholar
  28. 28.
    V. Lensky et al., Eur. Phys. J. A 26, 107 (2005) [nuclth/0505039].CrossRefADSGoogle Scholar
  29. 29.
    V.M. Kolybasov, A.E. Kudryavtsev, Nucl. Phys. B 41, 510 (1972).CrossRefADSGoogle Scholar
  30. 30.
    R.F. Mohr et al., Ann. Phys. (N.Y.) 321, 225 (2006) [nuclth/0509076]; R.F.J. Mohr, PhD Thesis, [nucl-th/0306086].MATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    M. Beneke, V.A. Smirnov, Nucl. Phys. B 522, 321 (1998) [hep-ph/9711391].CrossRefADSGoogle Scholar
  32. 32.
    V. Baru, E. Epelbaum, A. Rusetsky, in preparation.Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Forschungszentrum JülichInstitut für Kernphysik (Theorie) and Jülich Center for Hadron PhysicsJülichGermany
  2. 2.Institute for Theoretical and Experimental PhysicsMoscowRussia
  3. 3.Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany

Personalised recommendations