The European Physical Journal A

, Volume 41, Issue 3, pp 369–384 | Cite as

A novel treatment of the proton-proton Coulomb force in proton-deuteron Faddeev calculations: Elastic scattering

  • H. WitałaEmail author
  • R. Skibiński
  • J. Golak
  • W. Glöckle
Regular Article - Theoretical Physics


We propose a novel approach to incorporate the proton-proton (pp) Coulomb force into the three-nucleon (3N) Faddeev calculations. The main new ingredient is a 3-dimensional screened pp Coulomb t -matrix obtained by a numerical solution of the 3-dimensional Lippmann-Schwinger (LS) equation. We demonstrate numerically and provide analytical insight that the elastic proton-deuteron (pd ) observables can be determined directly from the resulting on-shell 3N amplitude increasing the screening radius. The screening limit exists without the need of renormalisation not only for observables but for the elastic pd amplitude itself.


21.45.-v Few-body systems 21.45.Bc Two-nucleon system 25.10.+s Nuclear reactions involving few-nucleon systems 25.40.Cm Elastic proton scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.O. Alt, W. Sandhas, H. Ziegelmann, Phys. Rev. C 17, 1981 (1978).Google Scholar
  2. 2.
    E.O. Alt, W. Sandhas, in Coulomb Interactions in Nuclear and Atomic Few-Body Collisions, edited by F.S. Levin, D. Micha (Plenum, New York, 1996) p. 1.Google Scholar
  3. 3.
    E.O. Alt, M. Rauh, Phys. Rev. C 49, R2285 (1994).Google Scholar
  4. 4.
    E.O. Alt, A.M. Mukhamedzhanov, M.M. Nishonov, A.I. Sattarov, Phys. Rev. C 65, 064613 (2002).Google Scholar
  5. 5.
    W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golak, Phys. Rep. 274, 107 (1996).Google Scholar
  6. 6.
    E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006) and references therein.Google Scholar
  7. 7.
    A. Kievsky, M. Viviani, S. Rosati, Phys. Rev. C 52, R15 (1995).Google Scholar
  8. 8.
    A. Deltuva, A.C. Fonseca, P.U. Sauer, Phys. Rev. C 72, 054004 (2005).Google Scholar
  9. 9.
    A. Deltuva, A.C. Fonseca, P.U. Sauer, Phys. Rev. C 71, 054005 (2005).Google Scholar
  10. 10.
    E. Stephan, Phys. Rev. C 76, 057001 (2007).Google Scholar
  11. 11.
    G. Rauprich, Nucl. Phys. A 535, 313 (1991).Google Scholar
  12. 12.
    R. Großmann, Nucl. Phys. A 603, 161 (1996).Google Scholar
  13. 13.
    H. Patberg, Phys. Rev. C 53, 1497 (1996).Google Scholar
  14. 14.
    M. Allet, Few-Body Syst. C 20, 27 (1996).Google Scholar
  15. 15.
    J. Zejma, Phys. Rev. C 55, 42 (1997).Google Scholar
  16. 16.
    R. Skibiński, J. Golak, H. Witała, W.Glöckle, Eur. Phys. J. A 40, 215 (2009).Google Scholar
  17. 17.
    H. Witała, W. Glöckle, H. Kamada, Phys. Rev. C 43, 1619 (1991).Google Scholar
  18. 18.
    W. Glöckle, The Quantum Mechanical Few-Body Problem (Springer Verlag, 1983).Google Scholar
  19. 19.
    J.C.Y. Chen, A.C. Chen, in Advances of Atomic and Molecular Physics, edited by D.R. Bates, J. Estermann, Vol. 8 (Academic Press, New York, 1972).Google Scholar
  20. 20.
    R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996).Google Scholar
  21. 21.
    W. Grüebler, Nucl. Phys. A 398, 445 (1983).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • H. Witała
    • 1
    Email author
  • R. Skibiński
    • 1
  • J. Golak
    • 1
  • W. Glöckle
    • 2
  1. 1.M. Smoluchowski Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Institut für theoretische Physik IIRuhr-Universität BochumBochumGermany

Personalised recommendations