Advertisement

Preparing a journey to the east of 208Pb with ISOLTRAP: Isobaric purification at A = 209 and new masses for 211-213Fr and 211Ra

  • M. Kowalska
  • S. Naimi
  • J. Agramunt
  • A. Algora
  • G. Audi
  • D. Beck
  • B. Blank
  • K. Blaum
  • Ch. Böhm
  • M. Breitenfeldt
  • E. Estevez
  • L. M. Fraile
  • S. George
  • F. Herfurth
  • A. Herlert
  • A. Kellerbauer
  • D. Lunney
  • E. Minaya-Ramirez
  • D. Neidherr
  • B. Olaizola
  • K. Riisager
  • M. Rosenbusch
  • B. Rubio
  • S. Schwarz
  • L. Schweikhard
  • U. Warring
Regular Article - Experimental Physics

Abstract

With the Penning trap mass spectrometer ISOLTRAP, located at ISOLDE/CERN, preparatory work has been performed towards mass and decay studies on neutron-rich Hg and Tl isotopes beyond N = 126 . The properties of these isotopes are not well known because of large isobaric contamination coming mainly from surface-ionised Fr. Within the studies, production tests using several target-ion source combinations were performed. It was furthermore demonstrated around mass number A = 209 that the resolving power required to purify Fr is achievable with ISOLTRAP. In addition, masses of several isobaric contaminants, 211-213Fr and 211Ra , were determined with a three-fold improved precision. The results influence masses of more than 20 other nuclides in the 208Pb region.

Keywords

208Pb Cyclotron Frequency Mass Excess Decay Study Precision Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Schweikhard, G. Bollen (Editors), Int. J. Mass Spectrom. 251,issue 2/3 (2006).Google Scholar
  2. 2.
    H. Raimbault-Hartmann et al., Nucl. Instrum. Methods B 126, 378 (1997).CrossRefGoogle Scholar
  3. 3.
    D. Beck et al., Nucl. Instrum. Methods B 126, 374 (1997).CrossRefGoogle Scholar
  4. 4.
    K. Blaum et al., Europhys. Lett. 67, 586 (2004).CrossRefADSGoogle Scholar
  5. 5.
    J.V. Roosbroeck et al., Phys. Rev. Lett. 92, 112501 (2004).CrossRefADSGoogle Scholar
  6. 6.
    S. Rinta-Antila et al., Eur. Phys. J. A 31, 1 (2007).CrossRefADSGoogle Scholar
  7. 7.
    M. Block et al., Phys. Rev. Lett. 100, 132501 (2008).CrossRefADSGoogle Scholar
  8. 8.
    D. Neidherr et al., Phys. Rev. Lett. 102, 112501 (2009).CrossRefADSGoogle Scholar
  9. 9.
    P. Möller et al., At. Data Nucl. Data Tables 66, 131 (1997).CrossRefADSGoogle Scholar
  10. 10.
    I. Borzov, Phys. Rev. C 67, 025802 (2003).CrossRefADSGoogle Scholar
  11. 11.
    C. Weber et al., Nucl. Phys. A 803, 1 (2008).CrossRefADSGoogle Scholar
  12. 12.
    G. Audi, A. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).CrossRefADSGoogle Scholar
  13. 13.
    L. Chen et al., Phys. Rev. Lett. 102, 122503 (2009).CrossRefADSGoogle Scholar
  14. 14.
    J. Jänecke, T. O’Donnell, Nucl. Phys. A 781, 317 (2007).CrossRefADSGoogle Scholar
  15. 15.
    J.-Y. Zhang et al., in Proceedings of the International Conference on Contemporary Topics in Nuclear Structure in Cocoyoc, Mexico, Vol. 109, C65 (1988) (unpublished).Google Scholar
  16. 16.
    J.-Y. Zhang, R.F. Casten, D.S. Brenner, Phys. Lett. B 227, 1 (1989).CrossRefADSGoogle Scholar
  17. 17.
    M. Stoitsov et al., Phys. Rev. Lett. 98, 132502 (2007).CrossRefADSGoogle Scholar
  18. 18.
    I. Talmi, Rev. Mod. Phys. 34, 704 (1962).CrossRefADSGoogle Scholar
  19. 19.
    S. Schwarz et al., Nucl. Phys. A 693, 533 (2001).CrossRefADSGoogle Scholar
  20. 20.
    L. Zhang et al., Eur. Phys. J. A 16, 299 (2003).CrossRefADSGoogle Scholar
  21. 21.
    M. Pfützner et al., Phys. Lett. B 444, 32 (1998).CrossRefADSGoogle Scholar
  22. 22.
    R. Firestone et al., Table of Isotopes, 1999 update (Wiley, 1999).Google Scholar
  23. 23.
    L. Zhang et al., Phys. Rev. C 58, 156 (2004).Google Scholar
  24. 24.
    T. Kuo, G. Herling, US Naval Research Laboratory, Report No. 2258 (1971).Google Scholar
  25. 25.
    K. Maier, Acta Phys. Pol. B 32, 899 (2001).ADSGoogle Scholar
  26. 26.
    K. Maier, M. Rejmund, Eur. Phys. J. A 14, 349 (2002).CrossRefADSGoogle Scholar
  27. 27.
    M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008).CrossRefADSGoogle Scholar
  28. 28.
    F. Herfurth et al., Nucl. Instrum. Methods A 469, 254 (2001).CrossRefADSGoogle Scholar
  29. 29.
    G. Savard et al., Phys. Lett. B 158, 247 (1991).Google Scholar
  30. 30.
    M. König et al., Int. J. Mass Spectrom. Ion Process. 142, 95 (1995).CrossRefGoogle Scholar
  31. 31.
    V. Fedosseev et al., Nucl. Instrum. Methods B 204, 353 (2003).CrossRefADSGoogle Scholar
  32. 32.
    U. Köster, Eur. Phys. J. A 15, 255 (2002).CrossRefADSGoogle Scholar
  33. 33.
    D. Stracener, Nucl. Instrum. Methods B 204, 42 (2003).CrossRefADSGoogle Scholar
  34. 34.
    M. Mena et al., Nucl. Instrum. Methods B 266, 4391 (2008).CrossRefADSGoogle Scholar
  35. 35.
    F. Schwellnus et al., Nucl. Instrum. Methods B 266, 4383 (2008).CrossRefADSGoogle Scholar
  36. 36.
    E. Bouquerel et al., Nucl. Instrum. Methods B 266, 4298 (2008).CrossRefADSGoogle Scholar
  37. 37.
    A. Kellerbauer et al., Eur. Phys. J. A 22, 53 (2003).Google Scholar
  38. 38.
    M. Bradley et al., Phys. Rev. Lett. 83, 4510 (1999).CrossRefADSGoogle Scholar
  39. 39.
    G. Bollen et al., J. Mod. Opt. 39, 257 (1992).CrossRefADSGoogle Scholar
  40. 40.
    K. Valli, E.K. Hyde, W. Treytl, J. Inorg. Nucl. Chem. 29, 2503 (1967).CrossRefGoogle Scholar
  41. 41.
    G. Audi et al., Nucl. Phys. A 378, 443 (1982).CrossRefADSGoogle Scholar
  42. 42.
    K. Valli, W. Treytl, E.K. Hyde, Phys. Rev. 161, 1284 (1967).CrossRefADSGoogle Scholar
  43. 43.
    F.P. Heßberger, S. Hofmann, D. Ackermann, Eur. Phys. J. A 16, 365 (2003).CrossRefADSGoogle Scholar
  44. 44.
    P. Hornshøj, P.G. Hansen, B. Jonson, Nucl. Phys. A 230, 380 (1974).CrossRefADSGoogle Scholar
  45. 45.
    K. Blaum, Phys. Rep. 425, 1 (2006).CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Kowalska
    • 1
  • S. Naimi
    • 2
  • J. Agramunt
    • 3
  • A. Algora
    • 3
    • 4
  • G. Audi
    • 2
  • D. Beck
    • 5
  • B. Blank
    • 6
  • K. Blaum
    • 7
  • Ch. Böhm
    • 7
  • M. Breitenfeldt
    • 9
  • E. Estevez
    • 3
  • L. M. Fraile
    • 10
  • S. George
    • 7
    • 8
  • F. Herfurth
    • 5
  • A. Herlert
    • 1
  • A. Kellerbauer
    • 7
  • D. Lunney
    • 2
  • E. Minaya-Ramirez
    • 2
  • D. Neidherr
    • 7
  • B. Olaizola
    • 10
  • K. Riisager
    • 11
  • M. Rosenbusch
    • 9
  • B. Rubio
    • 3
  • S. Schwarz
    • 12
  • L. Schweikhard
    • 9
  • U. Warring
    • 7
  1. 1.Physics DepartmentCERNGeneva 23Switzerland
  2. 2.CSNSM-IN2P3-CNRSUniversité de Paris SudOrsayFrance
  3. 3.IFICCSIC-Universidad de ValènciaValènciaSpain
  4. 4.Institute of Nuclear Research of the Hungarian Academy of SciencesDebrecenHungary
  5. 5.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  6. 6.CENBGUniversité Bordeaux 1/CNRS/IN2P3Gradignan CedexFrance
  7. 7.Max-Planck-Institut für KernphysikHeidelbergGermany
  8. 8.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany
  9. 9.Institut für PhysikErnst-Moritz-Arndt-UniversitätGreifswaldGermany
  10. 10.Departamento de Física Atómica, Molecular y NuclearUniversidad ComplutenseMadridSpain
  11. 11.Department of Physics and AstronomyUniversity of AarhusAarhusDenmark
  12. 12.NSCLMichigan State UniversityEast LansingUSA

Personalised recommendations