Advertisement

The European Physical Journal A

, Volume 41, Issue 3, pp 393–398 | Cite as

E0 transitional density for nuclei between spherical and deformed shapes

  • N. Yu. Shirikova
  • R. V. JolosEmail author
  • N. Pietralla
  • A. V. Sushkov
  • V. V. Voronov
Regular Article - Theoretical Physics

Abstract

The Generator Coordinate Method (GCM) is used to construct the effective nuclear density operator suitable for calculations of E0 transitional densities with collective eigenfunctions of the phenomenological Bohr Hamiltonian. For example, the 0+ gs \( \rightarrow\) 0+ 2 transitional density is calculated for the shape-phase transitional nucleus 150Nd using the eigenfunctions of the approximate X(5) solution of the Bohr Hamiltonian.

PACS

21.60.Ev Collective models 21.60.Jz Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations) 21.10.Ft Charge distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.O. Rasmussen, Nucl. Phys. 19, 85 (1960).Google Scholar
  2. 2.
    K. Heyde, P. Van Isacker, M. Waroquier, J.L. Wood, R.A. Meyer, Phys. Rep. 102, 291 (1983).Google Scholar
  3. 3.
    P. von Brentano, V. Werner, R.F. Casten, C. Scholl, E.A. McCutchan, R. Krücken, J. Jolie, Phys. Rev. Lett. 93, 152502 (2004).Google Scholar
  4. 4.
    J. Bonnet, A. Krugmann, J. Beller, N. Pietralla, R.V. Jolos, Phys. Rev. C 79, 044310 (2009).Google Scholar
  5. 5.
    L.M. Robledo, R.R. Rodrigues-Guzman, P. Sarriguren, Phys. Rev. C 78, 034314 (2008).Google Scholar
  6. 6.
    T. Niksic, D. Vretenar, G.A. Lalazissis, P. Ring, Phys. Rev. Lett. 99, 092502 (2007).Google Scholar
  7. 7.
    T. Niksic, Z.P. Li, D. Vretenar, L. Prochniak, J. Meng, P. Ring, Phys. Rev. C 79, 034303 (2009).Google Scholar
  8. 8.
    N. Pietralla, O.M. Gorbachenko, Phys. Rev. C 70, 011304(R) (2004).Google Scholar
  9. 9.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980).Google Scholar
  10. 10.
    A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26, no. 14, 1 (1952).Google Scholar
  11. 11.
    F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).Google Scholar
  12. 12.
    R. Krücken, Phys. Rev. Lett. 88, 232501 (2002).Google Scholar
  13. 13.
    P.-G. Reinhardt, J. Friedrich, N. Voegler, Z. Phys. A 316, 207 (1984).Google Scholar
  14. 14.
    D. Drechsel, W. Scheid, Z. Phys. 179, 556 (1964).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • N. Yu. Shirikova
    • 1
  • R. V. Jolos
    • 1
    Email author
  • N. Pietralla
    • 2
  • A. V. Sushkov
    • 1
  • V. V. Voronov
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institut für KernphysikTU DarmstadtDarmstadtGermany

Personalised recommendations