Advertisement

The European Physical Journal A

, Volume 41, Issue 3, pp 405–437 | Cite as

QCD thermodynamics from the lattice

  • C. E. DeTarEmail author
  • U. M. Heller
Review

Abstract

We review the current methods and results of lattice simulations of quantum chromodynamics at nonzero temperatures and densities. The review is intended to introduce the subject to interested nonspecialists and beginners. It includes a brief overview of lattice gauge theory, a discussion of the determination of the crossover temperature, the QCD phase diagram at zero and nonzero densities, the equation of state, some in-medium properties of hadrons including charmonium, and some plasma transport coefficients.

PACS

12.38.Gc Lattice QCD calculations 12.38.Mh Quark-gluon plasma 21.65.Qr Quark matter 25.75.Nq Quark deconfinement, quark-gluon plasma production, and phase transitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bazavov, Full nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks, arXiv: 0903.3598.Google Scholar
  2. 2.
    F. Wilczek, QCD in extreme conditions, arXiv: hep-ph/0003183.Google Scholar
  3. 3.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).Google Scholar
  4. 4.
    I. Montvay, G. Münster, Quantum Fields on the Computer (Cambridge University Press, Cambridge, 1997).Google Scholar
  5. 5.
    M. Creutz, Quantum Fields on the Computer (World Scientific, Singapore, 1992).Google Scholar
  6. 6.
    T. DeGrand, C. DeTar, Lattice Methods for Quantum Chromodynamics (World Scientific, Singapore, 2006).Google Scholar
  7. 7.
    K.G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445 (1974).Google Scholar
  8. 8.
    A.M. Wegner, Duality in generalized Ising models and phase transitions without local order parameters, J. Math. Phys. 12, 2259 (1971).Google Scholar
  9. 9.
    A.M. Polyakov, Compact gauge fields and the infrared catastrophe, Phys. Lett. B 59, 82 (1975).Google Scholar
  10. 10.
    M. Lüscher, P. Weisz, On-Shell Improved Lattice Gauge Theories, Commun. Math. Phys. 97, 59 (1985).Google Scholar
  11. 11.
    M. Lüscher, P. Weisz, Computation of the Action for On-Shell Improved Lattice Gauge Theories at Weak Coupling, Phys. Lett. B 158, 250 (1985).Google Scholar
  12. 12.
    K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. 2. O(N) Nonlinear Sigma Model in Perturbation Theory, Nucl. Phys. B 226, 205 (1983).Google Scholar
  13. 13.
    B. Sheikholeslami, R. Wohlert, Improved Continuum Limit Lattice Action for QCD with Wilson Fermions, Nucl. Phys. B 259, 572 (1985).Google Scholar
  14. 14.
    Alpha Collaboration (R. Frezzotti, P.A. Grassi, S. Sint, P. Weisz), Lattice QCD with a chirally twisted mass term, JHEP 08, 058 (2001) [arXiv: hep-lat/0101001].Google Scholar
  15. 15.
    R. Frezzotti, G.C. Rossi, Chirally improving Wilson fermions. I: O(a) improvement, JHEP 08, 007 (2004) [arXiv: hep-lat/0306014].Google Scholar
  16. 16.
    CP-PACS Collaboration (A. Ali Khan), Phase structure and critical temperature of two flavor QCD with renormalization group improved gauge action and clover improved Wilson quark action, Phys. Rev. D 63, 034502 (2001) [arXiv: hep-lat/0008011].Google Scholar
  17. 17.
    S. Ejiri, Lattice QCD thermodynamics with Wilson quarks, Prog. Theor. Phys. Suppl. 168, 245 (2007) [arXiv: 0704.3747].Google Scholar
  18. 18.
    HPQCD Collaboration (E. Follana, A. Hart, C.T.H. Davies, Q. Mason), The low-lying Dirac spectrum of staggered quarks, Phys. Rev. D 72, 054501 (2005) [arXiv: hep-lat/0507011].Google Scholar
  19. 19.
    S.R. Sharpe, Rooted staggered fermions: Good, bad or ugly?, PoS LAT2006, 022 (2006) [arXiv: hep-lat/ 0610094].Google Scholar
  20. 20.
    P. Lepage, Perturbative improvement for lattice QCD: An update, Nucl. Phys. B Proc. Suppl. 60, 267 (1998) [arXiv: hep-lat/9707026].Google Scholar
  21. 21.
    MILC Collaboration (C.W. Bernard), Quenched hadron spectroscopy with improved staggered quark action, Phys. Rev. D 58, 014503 (1998) [arXiv: hep-lat/9712010].Google Scholar
  22. 22.
    J.F. Lagae, D.K. Sinclair, Improving the staggered quark action to reduce flavour symmetry violations, Nucl. Phys. Proc. Suppl. 63, 892 (1998) [arXiv: hep-lat/9709035].Google Scholar
  23. 23.
    J.F. Lagae, D.K. Sinclair, Improved staggered quark actions with reduced flavour symmetry violations for lattice QCD, Phys. Rev. D 59, 014511 (1999) [arXiv: hep-lat/9806014].Google Scholar
  24. 24.
    MILC Collaboration (K. Orginos, D. Toussaint), Testing improved actions for dynamical Kogut-Susskind quarks, Phys. Rev. D 59, 014501 (1999) [arXiv: hep-lat/9805009].Google Scholar
  25. 25.
    MILC Collaboration (D. Toussaint, K. Orginos), Tests of improved Kogut-Susskind fermion actions, Nucl. Phys. Proc. Suppl. 73, 909 (1999) [arXiv: hep-lat/9809148].Google Scholar
  26. 26.
    G.P. Lepage, Flavor-symmetry restoration and Symanzik improvement for staggered quarks, Phys. Rev. D 59, 074502 (1999) [arXiv: hep-lat/9809157].Google Scholar
  27. 27.
    MILC Collaboration (K. Orginos, D. Toussaint, R.L. Sugar), Variants of fattening and flavor symmetry restoration, Phys. Rev. D 60, 054503 (1999) [arXiv: hep-lat/9903032].Google Scholar
  28. 28.
    MILC Collaboration (C.W. Bernard), Scaling tests of the improved Kogut-Susskind quark action, Phys. Rev. D 61, 111502 (2000) [arXiv: hep-lat/9912018].Google Scholar
  29. 29.
    U.M. Heller, F. Karsch, B. Sturm, Improved staggered fermion actions for QCD thermodynamics, Phys. Rev. D 60, 114502 (1999) [arXiv: hep-lat/9901010].Google Scholar
  30. 30.
    F. Karsch, E. Laermann, A. Peikert, The pressure in 2, 2+1 and 3 flavour QCD, Phys. Lett. B 478, 447 (2000) [arXiv: hep-lat/0002003].Google Scholar
  31. 31.
    HPQCD Collaboration (E. Follana), Highly improved staggered quarks on the lattice, with applications to charm physics, Phys. Rev. D 75, 054502 (2007) [arXiv: hep-lat/0610092].Google Scholar
  32. 32.
    Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabó, The QCD transition temperature: Results with physical masses in the continuum limit, Phys. Lett. B 643, 46 (2006) [arXiv: hep-lat/0609068].Google Scholar
  33. 33.
    N. Ishizuka, M. Fukugita, H. Mino, M. Okawa, A. Ukawa, Operator dependence of hadron masses for Kogut-Susskind quarks on the lattice, Nucl. Phys. B 411, 875 (1994).Google Scholar
  34. 34.
    D.B. Kaplan, A Method for simulating chiral fermions on the lattice, Phys. Lett. B 288, 342 (1992) [arXiv: hep-lat/9206013].Google Scholar
  35. 35.
    V. Furman, Y. Shamir, Axial symmetries in lattice QCD with Kaplan fermions, Nucl. Phys. B 439, 54 (1995) [arXiv: hep-lat/9405004].Google Scholar
  36. 36.
    R.G. Edwards, U.M. Heller, R. Narayanan, Spectral flow, chiral condensate and topology in lattice QCD, Nucl. Phys. B 535, 403 (1998) [arXiv: hep-lat/9802016].Google Scholar
  37. 37.
    M. Golterman, Y. Shamir, B. Svetitsky, Localization properties of lattice fermions with plaquette and improved gauge actions, Phys. Rev. D 72, 034501 (2005) [arXiv: hep-lat/0503037].Google Scholar
  38. 38.
    RBC Collaboration (D.J. Antonio), Localization and chiral symmetry in 3 flavor domain wall QCD, Phys. Rev. D 77, 014509 (2008) [arXiv: 0705.2340].Google Scholar
  39. 39.
    P. Chen, The finite temperature QCD phase transition with domain wall fermions, Phys. Rev. D 64, 014503 (2001) [arXiv: hep-lat/0006010].Google Scholar
  40. 40.
    RBC-HotQCD Collaboration (M. Cheng), QCD Thermodynamics with Domain Wall Fermions, PoS LAT2008, 180 (2008) [arXiv: 0810.1311].Google Scholar
  41. 41.
    R. Narayanan, H. Neuberger, A Construction of lattice chiral gauge theories, Nucl. Phys. B 443, 305 (1995) [arXiv: hep-th/9411108].Google Scholar
  42. 42.
    H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B 417, 141 (1998) [arXiv: hep-lat/9707022].Google Scholar
  43. 43.
    P.H. Ginsparg, K.G. Wilson, A Remnant of Chiral Symmetry on the Lattice, Phys. Rev. D 25, 2649 (1982).Google Scholar
  44. 44.
    M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys. Lett. B 428, 342 (1998) [arXiv: hep-lat/9802011].Google Scholar
  45. 45.
    Z. Fodor, S.D. Katz, K.K. Szabó, Dynamical overlap fermions, results with hybrid Monte-Carlo algorithm, JHEP 08, 003 (2004) [arXiv: hep-lat/0311010].Google Scholar
  46. 46.
    P. Hegde, F. Karsch, E. Laermann, S. Shcheredin, Lattice cut-off effects and their reduction in studies of QCD thermodynamics at non-zero temperature and chemical potential, Eur. Phys. J. C 55, 423 (2008) [arXiv: 0801.4883].Google Scholar
  47. 47.
    W. Bietenholz, R. Brower, S. Chandrasekharan, U.J. Wiese, Progress on perfect lattice actions for QCD, Nucl. Phys. Proc. Suppl. 53, 921 (1997) [arXiv: hep-lat/9608068].Google Scholar
  48. 48.
    R. Sommer, A New way to set the energy scale in lattice gauge theories and its applications to the static force and alpha-s in SU(2) Yang-Mills theory, Nucl. Phys. B 411, 839 (1994) [arXiv: hep-lat/9310022].Google Scholar
  49. 49.
    R. Gupta, The EOS from simulations on BlueGene L Supercomputer at LLNL and NYBlue, PoS LAT2008, 170 (2008).Google Scholar
  50. 50.
    HotQCD Collaboration (C. DeTar, R. Gupta), Toward a precise determination of $T_c$ with 2+1 flavors of quarks, PoS LAT2007, 179 (2007) [arXiv: 0710.1655].Google Scholar
  51. 51.
    HotQCD Collaboration (A. Bazavov), Equation of state and QCD transition at finite temperature, arXiv: 0903.4379.Google Scholar
  52. 52.
    MILC Collaboration (C. Bernard), QCD thermodynamics with three flavors of improved staggered quarks, Phys. Rev. D 71, 034504 (2005) [arXiv: hep-lat/0405029].Google Scholar
  53. 53.
    M. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, New York, 1995).Google Scholar
  54. 54.
    RBC-Bielefeld Collaboration, F. Karsch, Fluctuations of Goldstone modes and the chiral transition in QCD, Nucl. Phys. A 820, 99C (2008) [arXiv: 0810.3078].Google Scholar
  55. 55.
    Y. Maezawa, Thermodynamics and heavy-quark free energies at finite temperature and density with two flavors of improved Wilson quarks, PoS LAT2007, 207 (2007) [arXiv: 0710.0945].Google Scholar
  56. 56.
    W. Söldner, Quark Mass Dependence of the QCD Equation of State on $N_\tau$ = 8 Lattices, PoS LAT2008, 173 (2008).Google Scholar
  57. 57.
    Y. Aoki, The QCD transition temperature: results with physical masses in the continuum limit II, arXiv: 0903.4155.Google Scholar
  58. 58.
    MILC Collaboration (C. Aubin), Light hadrons with improved staggered quarks: Approaching the continuum limit, Phys. Rev. D 70, 094505 (2004) [arXiv: hep-lat/0402030].Google Scholar
  59. 59.
    G. Boyd, Equation of state for the SU(3) gauge theory, Phys. Rev. Lett. 75, 4169 (1995) [arXiv: hep-lat/9506025].Google Scholar
  60. 60.
    R.D. Pisarski, F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics, Phys. Rev. D 29, 338 (1984).Google Scholar
  61. 61.
    F. Karsch, E. Laermann, C. Schmidt, The chiral critical point in 3-flavor QCD, Phys. Lett. B 520, 41 (2001) [arXiv: hep-lat/0107020].Google Scholar
  62. 62.
    F. Karsch, Where is the chiral critical point in 3-flavor QCD?, Nucl. Phys. Proc. Suppl. 129, 614 (2004) [arXiv: hep-lat/0309116].Google Scholar
  63. 63.
    Y. Aoki, G. Endrödi, Z. Fodor, S.D. Katz, K.K. Szabó, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443, 675 (2006) [arXiv: hep-lat/0611014].Google Scholar
  64. 64.
    E. Laermann, O. Philipsen, Status of lattice QCD at finite temperature, Annu. Rev. Nucl. Part. Sci. 53, 163 (2003) [arXiv: hep-ph/0303042].Google Scholar
  65. 65.
    P. de Forcrand, O. Philipsen, The chiral critical line of $N_f$ = 2+1 QCD at zero and non-zero baryon density, JHEP 01, 077 (2007) [arXiv: hep-lat/0607017].Google Scholar
  66. 66.
    T. Mendes, Universality and Scaling at the chiral transition in two- flavor QCD at finite temperature, PoS LAT2007, 208 (2007) [arXiv: 0710.0746].Google Scholar
  67. 67.
    J.B. Kogut, D.K. Sinclair, Evidence for O(2) universality at the finite temperature transition for lattice QCD with 2 flavours of massless staggered quarks, Phys. Rev. D 73, 074512 (2006) [arXiv: hep-lat/0603021].Google Scholar
  68. 68.
    M. D’Elia, A. Di Giacomo, C. Pica, Two flavor QCD and confinement, Phys. Rev. D 72, 114510 (2005) [arXiv: hep-lat/0503030].Google Scholar
  69. 69.
    A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J.M. Verbaarschot, On the phase diagram of QCD, Phys. Rev. D 58, 096007 (1998) [arXiv: hep-ph/9804290].Google Scholar
  70. 70.
    F. Karsch, Lattice simulations of the thermodynamics of strongly interacting elementary particles and the exploration of new phases of matter in relativistic heavy ion collisions, J. Phys. Conf. Ser. 46, 122 (2006) [arXiv: hep-lat/0608003].Google Scholar
  71. 71.
    J.B. Kogut, Chiral Symmetry Restoration in Baryon Rich Environments, Nucl. Phys. B 225, 93 (1983).Google Scholar
  72. 72.
    M.G. Alford, K. Rajagopal, F. Wilczek, Color-flavor locking and chiral symmetry breaking in high density QCD, Nucl. Phys. B 537, 443 (1999) [arXiv: hep-ph/9804403].Google Scholar
  73. 73.
    R. Rapp, T. Schafer, E.V. Shuryak, M. Velkovsky, Diquark Bose condensates in high density matter and instantons, Phys. Rev. Lett. 81, 53 (1998) [arXiv: hep-ph/9711396].Google Scholar
  74. 74.
    M. Golterman, Y. Shamir, B. Svetitsky, Breakdown of staggered fermions at nonzero chemical potential, Phys. Rev. D 74, 071501 (2006) [arXiv: hep-lat/0602026].Google Scholar
  75. 75.
    O. Philipsen, The QCD phase diagram at zero and small baryon density, PoS LAT2005, 016 (2006) [arXiv: hep-lat/0510077].Google Scholar
  76. 76.
    S. Ejiri, Recent progress in lattice QCD at finite density, PoS LAT2008, 002 (2008).Google Scholar
  77. 77.
    A.M. Ferrenberg, R.H. Swendsen, New Monte Carlo Technique for Studying Phase Transitions, Phys. Rev. Lett. 61, 2635 (1988).Google Scholar
  78. 78.
    A.M. Ferrenberg, R.H. Swendsen, Optimized Monte Carlo analysis, Phys. Rev. Lett. 63, 1195 (1989).Google Scholar
  79. 79.
    D. Toussaint, Simulating QCD at finite density, Nucl. Phys. Proc. Suppl. 17, 248 (1990).Google Scholar
  80. 80.
    Z. Fodor, S.D. Katz, A new method to study lattice QCD at finite temperature and chemical potential, Phys. Lett. B 534, 87 (2002) [arXiv: hep-lat/0104001].Google Scholar
  81. 81.
    Z. Fodor, S.D. Katz, Critical point of QCD at finite T and $\mu$, lattice results for physical quark masses, JHEP 04, 050 (2004) [arXiv: hep-lat/0402006].Google Scholar
  82. 82.
    Z. Fodor, S.D. Katz, Lattice determination of the critical point of QCD at finite T and $\mu$, JHEP 03, 014 (2002) [arXiv: hep-lat/0106002].Google Scholar
  83. 83.
    J.B. Kogut, D.K. Sinclair, Lattice QCD at finite isospin density at zero and finite temperature, Phys. Rev. D 66, 034505 (2002) [arXiv: hep-lat/0202028].Google Scholar
  84. 84.
    J.B. Kogut, D.K. Sinclair, Lattice QCD at finite temperature and density in the phase-quenched approximation, Phys. Rev. D 77, 114503 (2008) [arXiv: 0712.2625].Google Scholar
  85. 85.
    P. de Forcrand, M.A. Stephanov, U. Wenger, On the phase diagram of QCD at finite isospin density, PoS LAT2007, 237 (2007) [arXiv: hep-lat/0711.0023].Google Scholar
  86. 86.
    I.M. Barbour, S.E. Morrison, E.G. Klepfish, J.B. Kogut, M.-P. Lombardo, Results on finite density QCD, Nucl. Phys. B Proc. Suppl. 60, 220 (1998) [arXiv: hep-lat/ 9705042].Google Scholar
  87. 87.
    J. Engels, O. Kaczmarek, F. Karsch, E. Laermann, The quenched limit of lattice QCD at non-zero baryon number, Nucl. Phys. B 558, 307 (1999) [arXiv: hep-lat/9903030].Google Scholar
  88. 88.
    P. de Forcrand, S. Kratochvila, Finite density QCD with a canonical approach, Nucl. Phys. Proc. Suppl. 153, 62 (2006) [arXiv: hep-lat/0602024].Google Scholar
  89. 89.
    A. Alexandru, M. Faber, I. Horvath, K.-F. Liu, Lattice QCD at finite density via a new canonical approach, Phys. Rev. D 72, 114513 (2005) [arXiv: hep-lat/0507020].Google Scholar
  90. 90.
    X.-f. Meng, A. Li, A. Alexandru, K.-F. Liu, Winding number expansion for the canonical approach to finite density simulations, PoS LATTICE2008, 032 (2008) [arXiv: 0811.2112].Google Scholar
  91. 91.
    A. Li, X. Meng, A. Alexandru, K.-F. Liu, Finite Density Simulations with Canonical Ensemble, PoS LATTICE2008, 178 (2008) [arXiv: 0810.2349].Google Scholar
  92. 92.
    P. de Forcrand, O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642, 290 (2002) [arXiv: hep-lat/0205016].Google Scholar
  93. 93.
    M. D’Elia, M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67, 014505 (2003) [arXiv: hep-lat/0209146].Google Scholar
  94. 94.
    C.R. Allton, The QCD thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66, 074507 (2002) [arXiv: hep-lat/0204010].Google Scholar
  95. 95.
    R.V. Gavai, S. Gupta, Pressure and non-linear susceptibilities in QCD at finite chemical potentials, Phys. Rev. D 68, 034506 (2003) [arXiv: hep-lat/0303013].Google Scholar
  96. 96.
    R.V. Gavai, S. Gupta, The critical end point of QCD, Phys. Rev. D 71, 114014 (2005) [arXiv: hep-lat/0412035].Google Scholar
  97. 97.
    R.V. Gavai, S. Gupta, QCD at finite chemical potential with six time slices, Phys. Rev. D 78, 114503 (2008) [arXiv: 0806.2233].Google Scholar
  98. 98.
    Z. Fodor, S.D. Katz, C. Schmidt, The density of states method at non-zero chemical potential, JHEP 03, 121 (2007) [arXiv: hep-lat/0701022].Google Scholar
  99. 99.
    S. Ejiri, On the existence of the critical point in finite density lattice QCD, Phys. Rev. D 77, 014508 (2008) [arXiv: 0706.3549].Google Scholar
  100. 100.
    G. Aarts, I.-O. Stamatescu, Stochastic quantization at finite chemical potential, JHEP 09, 018 (2008) [arXiv: 0807.1597].Google Scholar
  101. 101.
    G. Parisi, Y.-s. Wu, Perturbation Theory Without Gauge Fixing, Sci. Sin. 24, 483 (1981).Google Scholar
  102. 102.
    G. Parisi, On complex probabilities, Phys. Lett. B 131, 393 (1983).Google Scholar
  103. 103.
    P.H. Damgaard, H. Hüffel, Stochastic Quantization, Phys. Rep. 152, 227 (1987).Google Scholar
  104. 104.
    G. Aarts, Can stochastic quantization evade the sign problem? -- the relativistic Bose gas at finite chemical potential, Phys. Rev. Lett. 102, 131601 (2009) [arXiv: 0810.2089].Google Scholar
  105. 105.
    G. Aarts, Complex Langevin dynamics at finite chemical potential: mean field analysis in the relativistic Bose gas, JHEP 05, 052 (2009) [arXiv: 0902.4686].Google Scholar
  106. 106.
    P. de Forcrand, S. Kim, O. Philipsen, A QCD chiral critical point at small chemical potential: is it there or not?, PoS LAT2007, 178 (2007) [arXiv: 0711.0262].Google Scholar
  107. 107.
    P. de Forcrand, O. Philipsen, The curvature of the critical surface $(m_{ud},m_s)^{crit}(\mu)$: a progress report, PoS LATTICE2008, 208 (2008) [arXiv: 0811.3858].Google Scholar
  108. 108.
    P. de Forcrand, O. Philipsen, The chiral critical point of $N_f$ = 3 QCD at finite density to the order $(\mu/T)^4$, JHEP 11, 012 (2008) [arXiv: 0808.1096].Google Scholar
  109. 109.
    P. Petreczky, Quark Matter 2009: Finite temperature lattice QCD: Present status.Google Scholar
  110. 110.
    M. Laine, Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73, 085009 (2006) [arXiv: hep-ph/0603048].Google Scholar
  111. 111.
    J. Engels, J. Fingberg, F. Karsch, D. Miller, M. Weber, Nonperturbative thermodynamics of SU(N) gauge theories, Phys. Lett. B 252, 625 (1990).Google Scholar
  112. 112.
    CP-PACS Collaboration (A. Ali Khan), Equation of state in finite-temperature QCD with two flavors of improved Wilson quarks, Phys. Rev. D 64, 074510 (2001) [arXiv: hep-lat/0103028].Google Scholar
  113. 113.
    T. Umeda, Fixed Scale Approach to Equation of State in Lattice QCD, Phys. Rev. D 79, 051501 (2009) [arXiv: 0809.2842].Google Scholar
  114. 114.
    L. Levkova, T. Manke, R. Mawhinney, Two-flavor QCD thermodynamics using anisotropic lattices, Phys. Rev. D 73, 074504 (2006) [arXiv: hep-lat/0603031].Google Scholar
  115. 115.
    T. Umeda, Thermodynamics of SU(3) gauge theory at fixed lattice spacing, PoS LAT2008, 174 (2008).Google Scholar
  116. 116.
    G. Endrödi, Z. Fodor, S.D. Katz, K.K. Szabó, The equation of state at high temperatures from lattice QCD, PoS LAT2007, 228 (2007) [arXiv: 0710.4197].Google Scholar
  117. 117.
    E. Braaten, A. Nieto, Free Energy of QCD at High Temperature, Phys. Rev. D 53, 3421 (1996) [arXiv: hep-ph/9510408].Google Scholar
  118. 118.
    K. Kajantie, M. Laine, K. Rummukainen, Y. Schröder, The pressure of hot QCD up to $g^6$ ln(1/g), Phys. Rev. D 67, 105008 (2003) [arXiv: hep-ph/0211321].Google Scholar
  119. 119.
    G. Boyd, Thermodynamics of SU(3) Lattice Gauge Theory, Nucl. Phys. B 469, 419 (1996) [arXiv: hep-lat/9602007].Google Scholar
  120. 120.
    MILC Collaboration (C. Bernard), QCD thermodynamics with 2+1 flavors at nonzero chemical potential, Phys. Rev. D 77, 014503 (2008) [arXiv: 0710.1330].Google Scholar
  121. 121.
    MILC Collaboration (S. Basak), QCD equation of state at non-zero chemical potential, PoS LAT2008, 171 (2008).Google Scholar
  122. 122.
    P.H. Ginsparg, First Order and Second Order Phase Transitions in Gauge Theories at Finite Temperature, Nucl. Phys. B 170, 388 (1980).Google Scholar
  123. 123.
    T. Appelquist, R.D. Pisarski, High-Temperature Yang-Mills Theories and Three-Dimensional Quantum Chromodynamics, Phys. Rev. D 23, 2305 (1981).Google Scholar
  124. 124.
    M. Cheng, The Spatial String Tension and Dimensional Reduction in QCD, Phys. Rev. D 78, 034506 (2008) [arXiv: 0806.3264].Google Scholar
  125. 125.
    C.E. DeTar, A Conjecture Concerning the Modes of Excitation of the Quark-Gluon Plasma, Phys. Rev. D 32, 276 (1985).Google Scholar
  126. 126.
    M. Cheng, The QCD Equation of State with almost Physical Quark Masses, Phys. Rev. D 77, 014511 (2008) [arXiv: 0710.0354].Google Scholar
  127. 127.
    E. Laermann, Recent results on screening masses, PoS LAT2008, 193 (2008).Google Scholar
  128. 128.
    M. Asakawa, T. Hatsuda, $J/\psi$ and $\eta_c$ in the deconfined plasma from lattice QCD, Phys. Rev. Lett. 92, 012001 (2004) [arXiv: hep-lat/0308034].Google Scholar
  129. 129.
    S. Datta, F. Karsch, P. Petreczky, I. Wetzorke, Behavior of charmonium systems after deconfinement, Phys. Rev. D 69, 094507 (2004) [arXiv: hep-lat/0312037].Google Scholar
  130. 130.
    T. Matsui, H. Satz, $J/\psi$ Suppression by Quark-Gluon Plasma Formation, Phys. Lett. B 178, 416 (1986).Google Scholar
  131. 131.
    O. Jahn, O. Philipsen, The Polyakov loop and its relation to static quark potentials and free energies, Phys. Rev. D 70, 074504 (2004) [arXiv: hep-lat/0407042].Google Scholar
  132. 132.
    A. Mocsy, P. Petreczky, Can quarkonia survive deconfinement?, Phys. Rev. D 77, 014501 (2008) [arXiv: 0705.2559].Google Scholar
  133. 133.
    M. Laine, O. Philipsen, P. Romatschke, M. Tassler, Real-time static potential in hot QCD, JHEP 03, 054 (2007) [arXiv: hep-ph/0611300].Google Scholar
  134. 134.
    M.A. Escobedo, J. Soto, Non-relativistic bound states at finite temperature (I): the hydrogen atom, Phys. Rev. A 78, 032520 (2009) [arXiv: 0804.0691].Google Scholar
  135. 135.
    N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78, 014017 (2008) [arXiv: 0804.0993].Google Scholar
  136. 136.
    T. Umeda, K. Nomura, H. Matsufuru, Charmonium at finite temperature in quenched lattice QCD, Eur. Phys. J. C 39, s1, 9 (2005) [arXiv: hep-lat/0211003].Google Scholar
  137. 137.
    M. Jarrell, J. Gubernatis, Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data, Phys. Rep. 269, 133 (1996).Google Scholar
  138. 138.
    Y. Nakahara, M. Asakawa, T. Hatsuda, Hadronic spectral functions in lattice QCD, Phys. Rev. D 60, 091503 (1999) [arXiv: hep-lat/9905034].Google Scholar
  139. 139.
    M. Asakawa, T. Hatsuda, Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46, 459 (2001) [arXiv: hep-lat/0011040].Google Scholar
  140. 140.
    G. Aarts, C. Allton, M.B. Oktay, M. Peardon, J.-I. Skullerud, Charmonium at high temperature in two-flavor QCD, Phys. Rev. D 76, 094513 (2007) [arXiv: 0705.2198].Google Scholar
  141. 141.
    H.T. Ding, O. Kaczmarek, F. Karsch, H. Satz, Charmonium correlators and spectral functions at finite temperature, PoS (Confinement8), 108 (2008) [arXiv: 0901.3023].Google Scholar
  142. 142.
    F. Karsch, H.W. Wyld, Thermal Green’s functions and transport coefficients on the lattice, Phys. Rev. D 35, 2518 (1987).Google Scholar
  143. 143.
    G. Burgers, F. Karsch, A. Nakamura, I.O. Stamatescu, QCD on anisotropic lattices, Nucl. Phys. B 304, 587 (1988).Google Scholar
  144. 144.
    G. Aarts, C. Allton, J. Foley, S. Hands, S. Kim, Spectral functions at small energies and the electrical conductivity in hot, quenched lattice QCD, Phys. Rev. Lett. 99, 022002 (2007) [arXiv: hep-lat/0703008].Google Scholar
  145. 145.
    H.B. Meyer, Energy-momentum tensor correlators and spectral functions, JHEP 08, 031 (2008) [arXiv: 0806.3914].Google Scholar
  146. 146.
    H. Meyer, Energy-momentum tensor correlators and viscosity, PoS LAT2008, 017 (2008).Google Scholar
  147. 147.
    H.B. Meyer, A calculation of the bulk viscosity in SU(3) gluodynamics, Phys. Rev. Lett. 100, 162001 (2008) [arXiv: 0710.3717].Google Scholar
  148. 148.
    H.B. Meyer, A calculation of the shear viscosity in SU(3) gluodynamics, Phys. Rev. D 76, 101701 (2007) [arXiv: 0704.1801].Google Scholar
  149. 149.
    E. Braaten, R.D. Pisarski, T.-C. Yuan, Production of soft dileptons in the quark - gluon plasma, Phys. Rev. Lett. 64, 2242 (1990).Google Scholar
  150. 150.
    F. Karsch, E. Laermann, P. Petreczky, S. Stickan, I. Wetzorke, A lattice calculation of thermal dilepton rates, Phys. Lett. B 530, 147 (2002) [arXiv: hep-lat/0110208].Google Scholar
  151. 151.
    S. Gupta, The electrical conductivity and soft photon emissivity of the QCD plasma, Phys. Lett. B 597, 57 (2004) [arXiv: hep-lat/0301006].Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of UtahSalt Lake CityUSA
  2. 2.American Physical SocietyRidgeUSA

Personalised recommendations