The European Physical Journal A

, Volume 41, Issue 3, pp 315–321 | Cite as

Charge radii and magnetic moments of odd- A 183-189Pb isotopes

  • M. D. Seliverstov
  • A. N. Andreyev
  • N. Barré
  • A. E. Barzakh
  • S. Dean
  • H. De Witte
  • D. V. Fedorov
  • V. N. Fedoseyev
  • L. M. Fraile
  • S. Franchoo
  • J. Genevey
  • G. Huber
  • M. Huyse
  • U. Köster
  • P. Kunz
  • S. R. Lesher
  • B. A. Marsh
  • I. Mukha
  • B. Roussière
  • J. Sauvage
  • I. Stefanescu
  • K. Van de Vel
  • P. Van Duppen
  • Yu. M. Volkov
Regular Article - Experimental Physics

Abstract

Isotope shifts and hyperfine splitting parameters have been measured for the neutron-deficient odd-mass lead isotopes 183-189Pb . The measurement was performed at the ISOLDE (CERN) online mass separator using the in-source resonance ionization spectroscopy technique. The nuclear root mean square charge radii 〈r2〉 and the electromagnetic moments μ and QS have been deduced. They follow the smooth trend of the heavier isotopes and indicate the absence of deformation.

PACS

21.10.Ky Electromagnetic moments 27.70.+q 150 \( \leq\)A\( \leq\) 189 32.10.Fn Fine and hyperfine structure 42.62.Fi Laser spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.N. Andreyev, Nature 405, 430 (2000).Google Scholar
  2. 2.
    K. Van de Vel, Phys. Rev. C 65, 064301 (2002).Google Scholar
  3. 3.
    R. Julin, J. Phys. G 27, R109 (2001).Google Scholar
  4. 4.
    J. Pakarinen, Phys. Rev. C 75, 014302 (2007).Google Scholar
  5. 5.
    E.W. Otten, in Treatise on Heavy-Ion Science, edited by D.A. Bromley, Vol. 8 (Plenum Press, New York, 1989) p. 517.Google Scholar
  6. 6.
    H.-J. Kluge, W. Nörtershäuser, Spectrochim. Acta B 58, 1031 (2003).Google Scholar
  7. 7.
    S.B. Dutta, Z. Phys. A 341, 39 (1991).Google Scholar
  8. 8.
    M. Anselment, Nucl. Phys. A 451, 471 (1986).Google Scholar
  9. 9.
    H. de Witte, Phys. Rev. Lett. 98, 112502 (2007).Google Scholar
  10. 10.
    J. Bonn, Phys. Lett. B 38, 308 (1972).Google Scholar
  11. 11.
    G.D. Alkhazov, Nucl. Instrum. Methods B 69, 517 (1992).Google Scholar
  12. 12.
    A.E. Barzakh, Phys. Rev. C 61, 034304 (2000).Google Scholar
  13. 13.
    V.N. Fedosseev, Nucl. Instrum. Methods B 204, 353 (2003).Google Scholar
  14. 14.
    A.N. Andreyev, Eur. Phys. J. A 14, 63 (2002).Google Scholar
  15. 15.
    U. Köster, Nucl. Instrum. Methods B 204, 347 (2003).Google Scholar
  16. 16.
    J. Sauvage, Eur. Phys. J. A 39, 33 (2009).Google Scholar
  17. 17.
    H. De Witte, PhD Thesis, K.U. Leuven, Leuven, 2004.Google Scholar
  18. 18.
    B.A. Marsh, PhD Thesis, University of Manchester, Manchester, 2007.Google Scholar
  19. 19.
    K.S. Toth, Phys. Rev. C 60, 011302 (1999).Google Scholar
  20. 20.
    D.G. Jenkins, Phys. Rev. C 62, 021302 (2000).Google Scholar
  21. 21.
    D.G. Jenkins, Phys. Rev. C 66, 011301 (2002).Google Scholar
  22. 22.
    K. Van de Vel, Phys. Rev. C 68, 054311 (2003).Google Scholar
  23. 23.
    J.F.C. Cocks, Eur. Phys. J. A 3, 17 (1998).Google Scholar
  24. 24.
    R.B. Firestone, Table of Isotopes (Wiley, New York, 1996) p. 2372.Google Scholar
  25. 25.
    A.N. Andreyev, J. Phys. G 25, 835 (1999).Google Scholar
  26. 26.
    A.N. Andreyev, Phys. Rev. C 66, 014313 (2002).Google Scholar
  27. 27.
    U.J. Schrewe, Phys. Lett. B 91, 46 (1980).Google Scholar
  28. 28.
    J. Wauters, Z. Phys. A 345, 21 (1993).Google Scholar
  29. 29.
    J. Wauters, Z. Phys. A 342, 277 (1992).Google Scholar
  30. 30.
    E.C. Seltzer, Phys. Rev. 188, 1916 (1969).Google Scholar
  31. 31.
    W.D. Myers, K.H. Schmidt, Nucl. Phys. A 410, 61 (1983).Google Scholar
  32. 32.
    O. Lutz, G. Stricker, Phys. Lett. A 35, 397 (1971).Google Scholar
  33. 33.
    J. Dembczynski, H. Rebel, Z. Phys. A 315, 137 (1984).Google Scholar
  34. 34.
    T. Grahn, Phys. Rev. Lett. 97, 062501 (2006).Google Scholar
  35. 35.
    W.J. Tomlinson, H.H. Stroke, Nucl. Phys. 60, 614 (1964).Google Scholar
  36. 36.
    S. Raman, At. Data Nucl. Data Tables 78, 1 (2001).Google Scholar
  37. 37.
    G. Ulm, Z. Phys. A 325, 247 (1986).Google Scholar
  38. 38.
    R. Bauer, Nucl. Phys. A 209, 535 (1973).Google Scholar
  39. 39.
    P. Dabkiewicz, Phys. Lett. B 82, 199 (1979).Google Scholar
  40. 40.
    R.J. Reimann, M.N. McDermott, Phys. Rev C 7, 2065 (1973).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. D. Seliverstov
    • 1
    • 2
  • A. N. Andreyev
    • 3
    • 4
    • 5
  • N. Barré
    • 6
  • A. E. Barzakh
    • 2
  • S. Dean
    • 5
  • H. De Witte
    • 5
  • D. V. Fedorov
    • 2
  • V. N. Fedoseyev
    • 7
  • L. M. Fraile
    • 7
  • S. Franchoo
    • 1
    • 6
  • J. Genevey
    • 8
  • G. Huber
    • 1
  • M. Huyse
    • 5
  • U. Köster
    • 7
    • 9
  • P. Kunz
    • 1
  • S. R. Lesher
    • 5
  • B. A. Marsh
    • 7
    • 10
  • I. Mukha
    • 5
  • B. Roussière
    • 6
  • J. Sauvage
    • 6
  • I. Stefanescu
    • 5
  • K. Van de Vel
    • 5
  • P. Van Duppen
    • 5
  • Yu. M. Volkov
    • 2
  1. 1.Institut für PhysikJohannes Gutenberg UniversitätMainzGermany
  2. 2.Petersburg Nuclear Physics InstituteGatchinaRussia
  3. 3.Oliver Lodge LaboratoryUniversity of LiverpoolLiverpoolUK
  4. 4.TRIUMFVancouver BCCanada
  5. 5.Instituut voor Kern- en StralingsfysicaK.U. LeuvenLeuvenBelgium
  6. 6.Institut de Physique NucléaireIN2P3-CNRS/Université Paris-SudOrsay CedexFrance
  7. 7.ISOLDE,CERNGenève 23Switzerland
  8. 8.Laboratoire de Physique subatomique et de cosmologieIN2P3-CNRS/Université Joseph FourierGrenoble CedexFrance
  9. 9.Institut Laue-LangevinGrenoble Cedex 9France
  10. 10.Department of PhysicsUniversity of ManchesterManchesterUK
  11. 11.Universidad ComplutenseMadridSpain
  12. 12.Lawrence Livermore National LaboratoryLivermoreUSA
  13. 13.Universidad de SevillaSevillaSpain
  14. 14.ANLArgonneUSA
  15. 15.VITO, IMSMolBelgium

Personalised recommendations