The European Physical Journal A

, Volume 41, Issue 2, pp 215–227 | Cite as

Potential description of 6Li elastic scattering by 28Si

  • S. Hossain
  • M. N. A. Abdullah
  • A. K. BasakEmail author
  • S. K. Das
  • M. A. Uddin
  • A. S. B. Tariq
  • I. Reichstein
  • K. M. Rusek
  • F. B. Malik
Regular Article - Theoretical Physics


This work compares the performance of traditional phenomelogical Woods-Saxon (WS) and squared WS (SWS) potentials with that of a non-monotonic (NM) potential, microscopically derived using the energy-density functional (EDF) formalism from a realistic two-nucleon potential that includes the Pauli priciple. The experimental differential cross-sections (DCS) for the 6Li elastic scattering by 28Si over the incident energies E $Li$ = 7.5-99.0 MeV are well accounted for using the NM potential without the need of renormalization. At higher energies, in the range of 135.0-318.0MeV, the EDF-generated NM potential parameters need a revision for the satisfactory description of the DCS data. The DCS data in the entire energy range of 7.5-318.0 are also well described by the WS and SWS potentials. The inclusion of a static spin-orbit potential to the NM, WS and SWS central potentials is found to reproduce the features of the vector analyzing power iT11 data at 22.8MeV reasonably well in each of the cases. However, the WS and SWS potential parameters needed to describe the DCS and iT11 data are found inconsistent in terms of the variations of the real volume integrals per nucleon pair (VJR) with the incident energy. On the other hand, the EDF-generated NM potential is found to be consistent in terms of VJR and satisfactorily accounts for the DCS data in the entire range of energies considered herein and the features of the iT11 data at 22.8MeV.


24.10.Ht Optical and diffraction models 21.60.Jz Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations) 24.70.+s Polarization phenomena in reactions 27.20.+n 6 ≤ A ≤ 19 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.I. Cutler, M.J. Nadworny, K.W. Kemper, Phys. Rev. C 15, 1318 (1977).Google Scholar
  2. 2.
    P. Schwandt, W.W. Jacobs, M.D. Kaitchuck, P.P. Singh, W.D. Ploughe, F.D. Becchetti, J. Jänecke, Phys. Rev. C 24, 1522 (1981).Google Scholar
  3. 3.
    J. Cook, K.W. Kemper, M.F. Vineyard, Phys. Rev. C 26, 486 (1982).Google Scholar
  4. 4.
    J. Cook, Nucl. Phys. A 375, 238 (1982).Google Scholar
  5. 5.
    J.E. Poling, E. Norbeck, R.R. Carlson, Phys. Rev. C 13, 648 (1976).Google Scholar
  6. 6.
    A. Pakou, N. Alamanos, A. Lagoyannis, A. Gillibert, E.C. Pollacco, P.A. Assimakopoulos, G. Doukelis, K.G. Ioannides, D. Karadimos, D. Karamanis, M. Kokkoris, E. Kossionides, N.G. Nicolis, C. Papachristodoulou, N. Patronis, G. Perdikakis, D. Pierroutsakou, Phys. Lett. B 556, 21 (2003).Google Scholar
  7. 7.
    A. Pakou, N. Alamanos, G. Doukelis, A. Gillibert, G. Kalyva, M. Kokkoris, S. Kossionides, A. Lagoyannis, A. Masumarra, C. Pappachristodoulou, N. Patronis, G. Perdikakis, D. Pierroutsakou, E.C. Pollacco, K. Rusek, Phys. Rev. C 69, 054602 (2004).Google Scholar
  8. 8.
    M.F. Vineyard, J. Cook, K.W. Kemper, Nucl. Phys. A 405, 429 (1983).Google Scholar
  9. 9.
    F. Carstoiu, M. Lassaut, Nucl. Phys. A 597, 269 (1996).Google Scholar
  10. 10.
    R. Huffman, A. Galonsky, R. Markham, C. Williamson, Phys. Rev. C 22, 1522 (1980).Google Scholar
  11. 11.
    J. Cook, H.J. Gils, H. Rebel, Z. Majka, H. Klewe-Nebenius, Nucl. Phys. A 388, 173 (1982).Google Scholar
  12. 12.
    A. Nadasen, M. McMaster, M. Fingal, J. Tavormina, P. Schwandt, J.S. Winfield, M.F. Mohar, F.D. Becchetti, J.W. Jänecke, R.E. Warner, Phys. Rev. C 39, 536 (1989).Google Scholar
  13. 13.
    A. Nadasen, M. McMaster, G. Gunderson, A. Judd, S. Villanueva, P. Schwandt, J.S. Winfield, J. van der Plicht, R.E. Warner, F.D. Becchetti, J.W. Jänecke, Phys. Rev. C 37, 132 (1988).Google Scholar
  14. 14.
    A. Nadasen, T. Stevens, J. Farhat, J. Brusoe, P. Schwandt, J.S. Winfield, G. Yoo, N. Anantaraman, F.D. Becchetti, J. Brown, B. Hotz, J.W. Jänecke, D. Roberts, R.E. Warner, Phys. Rev. C 47, 674 (1993).Google Scholar
  15. 15.
    K.W. Potthast, H. Brand, H. Freiesleben, P. Rosenthal, B. Kamys, H. Paetz gen. Schieck, L. Sydow, Nucl. Phys. A 614, 95 (1997).Google Scholar
  16. 16.
    R. Ent, H.P. Block, J.F.A. van Hienen, G. van der Steenhoven, J.F.J. van der Brand, J.W.A. den Herder, E. Jans, P.H.M. Keizer, L. Lapikas, E.N.M. Quint, P.K.A. de Witt Huberts, B.L. Berman, W.J. Brisco, C.T. Christou, D.R. Lehman, N.E. Norum, A. Saha, Phys. Rev. Lett. 57, 2367 (1986).Google Scholar
  17. 17.
    P. Schwandt, S. Kailas, W.W. Jacobs, M.D. Kaitchuck, W. Ploughe, P.P. Singh, Phys. Rev. C 21, 1656 (1980).Google Scholar
  18. 18.
    G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979).Google Scholar
  19. 19.
    M.E. Brandan, G.R. Satchler, Phys. Rep. 285, 143 (1997).Google Scholar
  20. 20.
    D.T. Khoa, W. von Oertzen, Phys. Lett. B 32, 6 (1995).Google Scholar
  21. 21.
    D.T. Khoa, Phys. Rev. C 63, 034007 (2001).Google Scholar
  22. 22.
    Y. Sakuragi, Phys. Rev. C 35, 2161 (1987).Google Scholar
  23. 23.
    A. Pakou, Phys. Rev. C 78, 067601 (2008).Google Scholar
  24. 24.
    K.A. Brueckner, J.R. Buchler, S. Jorna, R.J. Lombard, Phys. Rev. 171, 1188 (1968).Google Scholar
  25. 25.
    K.A. Brueckner, J.L. Gammel, Phys. Rev. 109, 1023 (1958).Google Scholar
  26. 26.
    S. Hossain, M.N.A. Abdullah, A.S.B. Tariq, M.A. Uddin, A.K. Basak, K.M. Rusek, I. Reichstein, F.B. Malik, EPL 84, 52001 (2008).Google Scholar
  27. 27.
    M. Brack, C. Guet, H.-B. Hakanson, Phys. Rep. 123, 275 (1985).Google Scholar
  28. 28.
    M. Liu, N. Wang, Z. Li, X. Wu, E. Zhao, Nucl. Phys. A 768, 80 (2006).Google Scholar
  29. 29.
    A. Dobrowolski, K. Pomorski, J. Bartel, Nucl. Phys. A 729, 713 (2003)Google Scholar
  30. 30.
    M.N.A. Abdullah, M.S. Sabra, M.M. Rashid, Z. Shehadeh, M.M. Billah, S.K. Das, M.A. Uddin, A.K. Basak, I. Reichstein, H.M. Sen Gupta, F.B. Malik, Nucl. Phys. A 775, 1 (2006).Google Scholar
  31. 31.
    P. Manngård, M. Brenner, M.M. Alam, I. Reichstein, F.B. Malik, Nucl. Phys. A 504, 130 (1989).Google Scholar
  32. 32.
    A.S.B. Tariq, A.F.M.M. Rahman, S.K. Das, A.S. Mondal, M.A. Uddin, A.K. Basak, H.M. Sen Gupta, F.B. Malik, Phys. Rev. C 59, 2558 (1999).Google Scholar
  33. 33.
    M.N.A. Abdullah, M.S. Mahbub, S.K. Das, A.S.B. Tariq, M.A. Uddin, A.K. Basak, H.M. Sen Gupta, F.B. Malik, Eur. Phys. J. A 15, 477 (2002).Google Scholar
  34. 34.
    M.N.A. Abdullah, A.B. Idris, A.S.B. Tariq, M.S. Islam, S.K. Das, M.A. Uddin, A.S. Mondal, A.K. Basak, I. Reichstein, H.M. Sen Gupta, F.B. Malik, Nucl. Phys. A 760, 40 (2005).Google Scholar
  35. 35.
    M.M. Billah, M.N.A. Abdullah, S.K. Das, M.A. Uddin, A.K. Basak, I. Reichstein, H.M. Sen Gupta, F.B. Malik, Nucl. Phys. A 762, 50 (2005).Google Scholar
  36. 36.
    W. Weiss, P. Egelhof, K.D. Hildenbrand, D. Kassen, M. Makowska-Rzeszutko, D. Fick, H. Ebinghaus, E. Steffens, A. Amakawa, K.I. Kubo, Phys. Lett. B 61, 237 (1976).Google Scholar
  37. 37.
    K.A. Brueckner, S. Coon, J. Dabrowski, Phys. Rev. 168, 1184 (1968).Google Scholar
  38. 38.
    M.A. Hooshyar, I. Reichstein, F.B. Malik, Nuclear Fission and Cluster Radioactivity (Springer-Verlag, Berlin, 2005).Google Scholar
  39. 39.
    H. Ngô, Ch. Ngô, Nucl. Phys. A 348, 140 (1980).Google Scholar
  40. 40.
    K.H. Bray, Mahavir Jain, K.S. Jayaraman, G. Lobianco, G.A. Moss, W.T.H. van Oers, D.O. Wells, F. Petrovich, Nucl. Phys. A 189, 35 (1972).Google Scholar
  41. 41.
    D.P. Stanley, F. Petrovich, P. Schwandt, Phys. Rev. C 22, 1357 (1980).Google Scholar
  42. 42.
    S.K. Das, A.K. Basak, K. Banu, A.S. Mondal, A.S.B. Tariq, A.F.M.M. Rahman, H.M. Sen Gupta, F.B. Malik, Phys. Rev. C 62, 054606 (2000).Google Scholar
  43. 43.
    Th. Delbar, Gh. Grégoire, G. Paic, R. Ceuleneer, F. Michel, R. Vanderpoorten, R. Budzanowski, H. Dabrowski, L. Friendl, K. Grotoski, S. Micek, R. Planeta, A. Strzalkowski, A. Eberhard, Phys. Rev. C 18, 1237 (1978).Google Scholar
  44. 44.
    O. Bersillon, SCAT2 code, NEA 0829, 1988.Google Scholar
  45. 45.
    F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975).Google Scholar
  46. 46.
    I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988).Google Scholar
  47. 47.
    A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003).Google Scholar
  48. 48.
    I.J. Thompson, M.A. Nagarajan, J.S. Lilley, M.J. Smithson, Nucl. Phys. A 505, 84 (1989).Google Scholar
  49. 49.
    C. Mahaux, H. Ngô, G.R. Satchler, Nucl. Phys. A 449, 354 (1986).Google Scholar
  50. 50.
    M.A. Nagarajan, C.C. Mahaux, G.R. Satchler, Phys. Rev. Lett. 54, 1136 (1985).Google Scholar
  51. 51.
    H. Nishioka, R.C. Johnson, J.A. Tostevin, K.-I. Kubo, Phys. Rev. Lett. 48, 1795 (1982).Google Scholar
  52. 52.
    D. Fick, G. Grawert, Irena M. Turkiewicz, Phys. Rep. 214, 1 (1992).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Hossain
    • 1
  • M. N. A. Abdullah
    • 2
  • A. K. Basak
    • 3
    Email author
  • S. K. Das
    • 1
  • M. A. Uddin
    • 3
  • A. S. B. Tariq
    • 3
  • I. Reichstein
    • 4
  • K. M. Rusek
    • 5
  • F. B. Malik
    • 6
    • 7
  1. 1.Department of PhysicsShahjalal University of Science and TechnologySylhetBangladesh
  2. 2.Department of PhysicsRajshahi University of Engineering and TechnologyRajshahiBangladesh
  3. 3.Department of PhysicsUniversity of RajshahiRajshahiBangladesh
  4. 4.School of Computer ScienceCarleton UniversityOttawaCanada
  5. 5.Department of Nuclear ReactionsThe Andrzej Soltan Institute for Nuclear StudiesWarsawPoland
  6. 6.Department of PhysicsSouthern Illinois UniversityCarbondaleUSA
  7. 7.Department of PhysicsWashington UniversitySt. LouisUSA

Personalised recommendations