Advertisement

The European Physical Journal A

, Volume 41, Issue 2, pp 155–168 | Cite as

Background study and Monte Carlo simulations for large-mass bolometers

  • C. Bucci
  • S. Capelli
  • M. Carrettoni
  • M. Clemenza
  • O. Cremonesi
  • L. Gironi
  • P. Gorla
  • C. Maiano
  • A. Nucciotti
  • L. Pattavina
  • M. PavanEmail author
  • M. Pedretti
  • S. Pirro
  • E. Previtali
  • M. Sisti
Regular Article - Experimental Physics

Abstract

Large-mass bolometers are today extensively used for dark matter and double beta decay searches, in both cases the ultimate experimental sensitivity is defined by the background level reached in such devices. The most common background sources and the techniques used for their identification and reduction are here reviewed, with a particular focus on double beta decay searches. The relevant role played by Monte Carlo simulations in this field is discussed. As a real case, the background optimization in the MiDBD experiment is described.

PACS

29.40.-n Radiation detectors 23.40.-s β decay double β decay electron and muon capture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Booth, B. Cabrera, E. Fiorini, Annu. Rev. Nucl. Part. Sci. 46, 471 (1996)Google Scholar
  2. 2.
    C. Arnaboldi, Phys. Rev. Lett. 95, 14501 (2005).Google Scholar
  3. 3.
    D.S. Akerib, Phys. Rev. Lett. 93, 211301 (2004).Google Scholar
  4. 4.
    A. Benoit, Phys. Lett. B 545, 43 (2002).Google Scholar
  5. 5.
    G. Angloher, Astropart. Phys. 18, 1 (2002).Google Scholar
  6. 6.
    A. Alessandrello, Phys. Rev. C 67, 014323 (2003).Google Scholar
  7. 7.
    Marcillac, Nature 422, 876 (2003).Google Scholar
  8. 8.
    V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 80, 83 (2002)Google Scholar
  9. 9.
    M.W. Goodman, E. Witten, Phys. Rev. D 31, 3059 (1985)Google Scholar
  10. 10.
    C. Dorr, H.V. Klapdor-Kleingrothaus, Nucl. Instrum. Methods A 513, 596 (2003)Google Scholar
  11. 11.
    S. Fiorucci, Astropart. Phys. 28, 143 (2007).Google Scholar
  12. 12.
    G. Heusser, Annu. Rev. Nucl. Part. C 45, 543 (1995).Google Scholar
  13. 13.
    R. Silberberg, C.H. Tsao, Astrophys. J. 501, 911 (1998).Google Scholar
  14. 14.
    J. Martoff, P.D. Lewin, Comput. Phys. Commun. 72, 96 (1992).Google Scholar
  15. 15.
    H. Miley, Nucl. Phys. B (Proc. Suppl.) 28A, 212 (1992)Google Scholar
  16. 16.
    Proceedings of the 2nd Topical Workshop on Low Radioactivity Techniques, LTR 2006, AIP Conf. Proc., Vol. 897 (2007).Google Scholar
  17. 17.
    M. Laubenstein, Appl. Rad. Isotopes 61, 167 (2004).Google Scholar
  18. 18.
    D. Budjas, Appl. Rad. Isotopes 67, 755 (2009).Google Scholar
  19. 19.
    S. Capelli, CUORE Internal Notes CUORE-2008-01, http://crio.mib.infn.it.Google Scholar
  20. 20.
    D.S. Leonard, Nucl. Instrum. Methods A 591, 490 (2008).Google Scholar
  21. 21.
    P. Belli, Nuovo Cimento A 101, 959 (1989).Google Scholar
  22. 22.
    F. Arneodo, Nuovo Cimento 112, 819 (1999).Google Scholar
  23. 23.
    M. Cribier, Astropart. Phys. 4, 23 (1995).Google Scholar
  24. 24.
    H. Wulandari, Neutron flux at the Gran Sasso Underground Laboratory Revisited, hep-ex/0312050.Google Scholar
  25. 25.
    H. Wulandari, Neutron Background Studies for the CRESST Dark Matter Experiment, hep-ex/0401032.Google Scholar
  26. 26.
    M.J. Carson, Simulation of neutron background in a time projection chamber relevant to dark matter searches, hep-ex/0503017.Google Scholar
  27. 27.
    D.M. Mei, A. Hime, Phys. Rev. D 73, 053004 (2006).Google Scholar
  28. 28.
    M. Ambrosio, Phys. Rev. D 52, 3793 (1995)Google Scholar
  29. 29.
    A. Dementyev, Nulc. Phys. B (Proc. Suppl.) 70, 486 (1999)Google Scholar
  30. 30.
    A. Alessandrello, Nucl. Instrum. Methods A 409, 451 (1998).Google Scholar
  31. 31.
    A. Alessandrello, Phys. Lett. B 285, 176 (1992)Google Scholar
  32. 32.
    C. Arnaboldi, Phys. Lett. B 557, 167 (2003).Google Scholar
  33. 33.
    CUORE Collaboration, LNGS Annual Report 2005 and LNGS Annual Report 2006, www.lngs.infn.it.Google Scholar
  34. 34.
    A. Alessandrello, Nucl. Instrum. Methods B 61, 106 (1991).Google Scholar
  35. 35.
    A. Alessandrello, Nucl. Instrum. Methods A 142, 454 (1998).Google Scholar
  36. 36.
    S. Agostinelli, Nucl. Instrum. Methods A 506, 250 (2003)Google Scholar
  37. 37.
    http://www.nndc.bnl.gov/ensdf/.Google Scholar
  38. 38.
    F. Rösel, H.M. Fries, K. Alder, At. Data Nucl. Data Tables 21, issues nos. 2, 3, 4, 5 (1978).Google Scholar
  39. 39.
    I.M. Band, M.B. Trzhaskovskaya, M.A. Listengarten, At. Data Nucl. Data Tables 21, 1 (1978).Google Scholar
  40. 40.
    I.M. Band, M.B. Trzhaskovskaya, At. Data Nucl. Data Tables 55, 43 (1993).Google Scholar
  41. 41.
    W. Bambynek, Rev. Mod. Phys. 49, issue no. 1 (1977).Google Scholar
  42. 42.
    E. Browne, R.B. Firestone, Table of Radioactive Isotopes, edited by V.S. Shirley (Wiley-Interscience, John Wiley & Sons, Inc, New York 1986).Google Scholar
  43. 43.
    A. Alessandrello, Nucl. Instrum. Methods A 412, 451 (1998).Google Scholar
  44. 44.
    A. Alessandrello, Nucl. Instrum. Methods A 440, 397 (2000).Google Scholar
  45. 45.
    C. Arnaboldi, Astropart. Phys. 20, 91 (2003)Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • C. Bucci
    • 1
  • S. Capelli
    • 2
    • 3
  • M. Carrettoni
    • 2
    • 3
  • M. Clemenza
    • 2
    • 3
  • O. Cremonesi
    • 3
  • L. Gironi
    • 2
    • 3
  • P. Gorla
    • 1
  • C. Maiano
    • 2
    • 3
  • A. Nucciotti
    • 2
    • 3
  • L. Pattavina
    • 2
    • 3
  • M. Pavan
    • 2
    • 3
    Email author
  • M. Pedretti
    • 3
    • 4
  • S. Pirro
    • 3
  • E. Previtali
    • 3
  • M. Sisti
    • 2
    • 3
  1. 1.INFNLaboratori Nazionali del Gran SassoAssergi (L’Aquila)Italy
  2. 2.Dipartimento di FisicaUniversità degli Studi di Milano-BicoccaMilanoItaly
  3. 3.sezione di Milano BicoccaINFNMilanoItaly
  4. 4.Dipartimento di Fisica e MatematicaUniversità dell’InsubriaComoItaly

Personalised recommendations