Advertisement

Radioactive ion beam experiments with active targets

  • P. Roussel-Chomaz
  • On behalf of the MAYA and ACTAR Collaborations
Regular Article - Experimental Physics
  • 78 Downloads

Abstract

By the very nature of secondary beams, their intensity is limited, particularly for beams of the highest interest --farthest away from stability. Active targets, which can be described as time projection chamber (TPC)-like detectors in which the detector gas is the target, have been shown to have the highest sensitivity for quantitative high-resolution studies of rare events. The physics cases that can be addressed with these devices are reviewed and some of the first results obtained with first-generation active targets are detailed. Finally some general ideas on the next generation of active targets are presented

Keywords

Active Target Symmetry Energy Time Projection Chamber Exotic Nucleus Giant Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.A. Vorobyov et al., Nucl. Instrum. Methods 119, 509 (1974).CrossRefADSGoogle Scholar
  2. 2.
    A.A. Vorobyov et al., Nucl. Instrum. Methods A 270, 419 (1988).CrossRefADSGoogle Scholar
  3. 3.
    C.E. Demonchy et al., Nucl. Instrum. Methods A 573, 145 (2007).CrossRefADSGoogle Scholar
  4. 4.
    C.E. Demonchy et al., Nucl. Instrum. Methods A 583, 341 (2007).CrossRefADSGoogle Scholar
  5. 5.
    H. Savajols et al., Nucl. Instrum. Methods B 266, 4583 (2008).CrossRefADSGoogle Scholar
  6. 6.
    T Hashimoto et al., Nucl. Instrum. Methods A 556, 339 (2006).CrossRefADSGoogle Scholar
  7. 7.
    G.D. Alkhazov et al., Nucl. Phys. A 712, 269 (2002).CrossRefADSGoogle Scholar
  8. 8.
    P. Egelhof et al., Eur. Phys. J. A 15, 27 (2002).CrossRefADSGoogle Scholar
  9. 9.
    A. Dobrovolsky et al., Nucl. Phys. A 766, 1 (2006).CrossRefADSGoogle Scholar
  10. 10.
    W.N. Catford et al., Eur. Phys. J. A 25,s01, 245 (2005).CrossRefGoogle Scholar
  11. 11.
    E. Pollacco et al., Eur. Phys. J. A 25,s01, 287 (2005).CrossRefGoogle Scholar
  12. 12.
    M. Freer, Rep. Prog. Phys. 70, 2149 (2007).CrossRefADSGoogle Scholar
  13. 13.
    H. Ishiyama et al., Phys. Lett. B 640, 82 (2006).CrossRefADSGoogle Scholar
  14. 14.
    A. Laird et al., Nucl. Instrum. Methods A 573, 306 (2007).CrossRefADSGoogle Scholar
  15. 15.
  16. 16.
    G. Rogachev, private communication.Google Scholar
  17. 17.
    J.C. Santiard et al., CERN Report No. CERN-ECP-94-17, 1994.Google Scholar
  18. 18.
    M. Caamano et al., Phys. Rev. Lett. 99, 062502 (2007).CrossRefADSGoogle Scholar
  19. 19.
    M. Caamano et al., Phys. Rev. C 78, 044001 (2008).CrossRefADSGoogle Scholar
  20. 20.
    A. Leistenschneider et al., Phys. Rev. Lett. 86, 5442 (2001).CrossRefADSGoogle Scholar
  21. 21.
    J. Gibelin et al., Nucl. Phys. A 788, 153c (2007).CrossRefADSGoogle Scholar
  22. 22.
    P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005).CrossRefADSGoogle Scholar
  23. 23.
    R. Anne, Nucl. Instrum. Methods B 126, 279 (1997).CrossRefADSGoogle Scholar
  24. 24.
    C. Monrozeau et al., Phys. Rev. Lett. 100, 042501 (2008).CrossRefADSGoogle Scholar
  25. 25.
    D. Ridikas et al., Phys. Rev. C 63, 146010 (2000).CrossRefGoogle Scholar
  26. 26.
    M. Harakeh, A. van der Woude, Giant Resonances (Oxford University Press, New York, 2001).Google Scholar
  27. 27.
    I. Tanihata et al., Phys. Rev. Lett. 100, 192502 (2008).CrossRefADSGoogle Scholar
  28. 28.

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • P. Roussel-Chomaz
    • 1
  • On behalf of the MAYA and ACTAR Collaborations
  1. 1.GANILCEA/DSM - CNRS/IN2P3Caen Cedex 5France

Personalised recommendations