The European Physical Journal A

, Volume 42, Issue 3, pp 311–317 | Cite as

Recent developments in ion detection techniques for Penning trap mass spectrometry at TRIGA-TRAP

  • J. Ketelaer
  • K. Blaum
  • M. Block
  • K. Eberhardt
  • M. Eibach
  • R. Ferrer
  • S. George
  • F. Herfurth
  • J. Ketter
  • Sz. Nagy
  • J. Repp
  • L. Schweikhard
  • C. Smorra
  • S. Sturm
  • S. Ulmer
Open Access
Regular Article - Experimental Physics

Abstract

The highest precision in the determination of nuclear and atomic masses can be achieved by Penning trap mass spectrometry. The mass value is obtained through a measurement of the cyclotron frequency of the stored charged particle. Two different approaches are used at the Penning trap mass spectrometer TRIGA-TRAP for the mass determination: the destructive Time-Of-Flight Ion Cyclotron Resonance (TOF-ICR) technique and the non-destructive Fourier Transform Ion Cyclotron Resonance (FT-ICR) method. New developments for both techniques are described, which will improve the detection efficiency and the suppression of contaminations in the case of TOF-ICR. The FT-ICR detection systems will allow for the investigation of an incoming ion bunch from a radioactive-beam facility on the one hand, and for the detection of a single singly charged ion in the Penning trap on the other hand.

References

  1. 1.
    K. Blaum, Phys. Rep. 425, 1 (2006).CrossRefADSGoogle Scholar
  2. 2.
    L. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).CrossRefADSGoogle Scholar
  3. 3.
    L. Brown, G. Gabrielse, Phys. Rev. A 25, 2423 (1982).CrossRefADSGoogle Scholar
  4. 4.
    M. Smith, M. Brodeur, T. Brunner et al., arXiv preprint, arXiv: 0807.1260.Google Scholar
  5. 5.
    A. Kellerbauer, G. Audi, D. Beck et al., Phys. Rev. Lett. 93, 72502 (2004).CrossRefADSGoogle Scholar
  6. 6.
    G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980).CrossRefGoogle Scholar
  7. 7.
    M. König, G. Bollen, H. Kluge et al., Int. J. Mass Spectrom. Ion Process. 142, 95 (1995).CrossRefGoogle Scholar
  8. 8.
    L. Schweikhard, G. Bollen (Editors), Ultra-Accurate Mass Spectrometry and Related Topics, Int. J. Mass Spectrom. 251, issue nos. 2–3 (2006) (special issue).Google Scholar
  9. 9.
    J. Wiza, Nucl. Instrum. Methods 162, 587 (1979).CrossRefADSGoogle Scholar
  10. 10.
    M. Mukherjee, D. Beck, K. Blaum et al., Eur. Phys. J. A 35, 31 (2008).CrossRefADSGoogle Scholar
  11. 11.
    C. Yazidjian, K. Blaum, R. Ferrer et al., Hyperfine Interact. 173, 181 (2006).CrossRefADSGoogle Scholar
  12. 12.
    BURLE: Channeltron™ Electron Multiplier Handbook for Mass Spectrometry, http://www.burle.com/cgi-bin/byteserver.pl/pdf/ChannelBook.pdf (2001).
  13. 13.
    S. Coeck, M. Beck, B. Delauré et al., Nucl. Instrum. Methods A 557, 516 (2006).CrossRefADSGoogle Scholar
  14. 14.
    A. Kellerbauer, K. Blaum, G. Bollen et al., Eur. Phys. J. D 22, 53 (2003).CrossRefADSGoogle Scholar
  15. 15.
    G. Eitel et al., submitted to Nucl. Instrum. Methods (2008).Google Scholar
  16. 16.
    A. Marshall, C. Hendrickson, G. Jackson, Mass Spectrom. Rev. 17, 1 (1998).CrossRefGoogle Scholar
  17. 17.
    S. Rainville, J. Thompson, D. Pritchard, Science 303, 334 (2004).CrossRefADSGoogle Scholar
  18. 18.
    W. Shi, M. Redshaw, E. Myers, Phys. Rev. A 72, 22510 (2005).CrossRefADSGoogle Scholar
  19. 19.
    R. Van Dyck jr., S. Zafonte, S. Van Liew et al., Phys. Rev. Lett. 92, 220802 (2004).CrossRefGoogle Scholar
  20. 20.
    D. Pinegar, S. Zafonte, R. Van Dyck, Hyperfine Interact. 174, 47 (2007).CrossRefADSGoogle Scholar
  21. 21.
    G. Werth, J. Alonso, T. Beier et al., Int. J. Mass Spectrom. 251, 152 (2006).CrossRefADSGoogle Scholar
  22. 22.
    B. Odom, D. Hanneke, B. D’Urso et al., Phys. Rev. Lett. 97, 30801 (2006).CrossRefADSGoogle Scholar
  23. 23.
    J. Ketelaer, J. Krämer, D. Beck et al., Nucl. Instrum. Methods A 594, 162 (2008).CrossRefADSGoogle Scholar
  24. 24.
    K. Eberhardt, A. Kronenberg, Kerntechnik 65, 269 (2000).Google Scholar
  25. 25.
    M. Block, D. Ackermann, K. Blaum et al., Eur. Phys. J. A 45, 39 (2007).Google Scholar
  26. 26.
    G. Münzenberg, W. Faust, S. Hofmann et al., Nucl. Instrum. Methods 161, 65 (1979).CrossRefGoogle Scholar
  27. 27.
    B. Brehm, J. Grosser, T. Ruscheinski et al., Meas. Sci. Technol. 6, 953 (1995).CrossRefADSGoogle Scholar
  28. 28.
    H.C. Straub, M.A. Mangan, B.G. Lindsay et al., Rev. Sci. Instrum. 70, 4238 (1999).CrossRefADSGoogle Scholar
  29. 29.
    A. Müller, N. Djurić, G.H. Dunn et al., Rev. Sci. Instrum. 57, 349 (1986).CrossRefADSGoogle Scholar
  30. 30.
    RoentDek Handels GmbH, Kelkheim Ruppertshain, http://www.roentdek.de.
  31. 31.
    G. Bollen, Nucl. Phys. A 693, 3 (2001).CrossRefADSGoogle Scholar
  32. 32.
    G. Savard et al., Phys. Lett. A 158, 247 (1991).CrossRefADSGoogle Scholar
  33. 33.
    Stanford Research Systems, Inc., 1290-D Reamwood Avenue, Sunnyvale, CA 94089, USA, http://www.thinksrs.com.
  34. 34.
    NF Corporation, 6-3-20 Tsunashima Higashi, Kohoku-ku, Yokohama 223-8508, Japan, http://www.nfcorp.co.jp.
  35. 35.
    L. Schweikhard, Int. J. Mass. Spectrom. 107, 281 (1991).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • J. Ketelaer
    • 1
  • K. Blaum
    • 2
    • 3
  • M. Block
    • 4
  • K. Eberhardt
    • 5
  • M. Eibach
    • 1
  • R. Ferrer
    • 1
  • S. George
    • 1
    • 2
  • F. Herfurth
    • 4
  • J. Ketter
    • 1
  • Sz. Nagy
    • 1
    • 2
  • J. Repp
    • 1
  • L. Schweikhard
    • 6
  • C. Smorra
    • 3
    • 5
  • S. Sturm
    • 1
  • S. Ulmer
    • 1
    • 3
  1. 1.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany
  3. 3.Physikalisches InstitutRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  4. 4.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  5. 5.Institut für KernchemieJohannes Gutenberg-Universität MainzMainzGermany
  6. 6.Institut für PhysikErnst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany
  7. 7.National Superconducting Cyclotron Laboratory, MSUEast LansingUSA

Personalised recommendations