Advertisement

The European Physical Journal A

, Volume 39, Issue 2, pp 187–194 | Cite as

Total reaction and fusion cross sections at sub- and near-barrier energies for the system 7Li + 28Si

  • A. PakouEmail author
  • K. Rusek
  • N. Alamanos
  • X. Aslanoglou
  • M. Kokkoris
  • A. Lagoyannis
  • T. J. Mertzimekis
  • A. Musumarra
  • N. G. Nicolis
  • D. Pierroutsakou
  • D. Roubos
Regular Article - Experimental Physics

Abstract

Fusion cross sections are extracted for the 7Li$ + $28Si system, via reaction cross section and transfer measurements at sub- and near-barrier energies ( E lab = 5.7 to 14MeV). The energy evolution of transfer to reaction cross section ratios is determined with the aid of CDCC calculations, which subsequently allows the deduction of fusion cross sections at sub- and near-barrier energies. It is shown that fusion can be well represented in a BPM context. Fusion cross sections are compared for the systems 7Li$ + $28Si and 6Li$ + $28Si, the latter studied previously, and are found to exhibit different strengths. Last, the direct channels determined at 13MeV, are found to be dominated by a 2n -transfer mechanism.

PACS

25.70.Bc Elastic and quasielastic scattering 24.10.Ht Optical and diffraction models 24.10.Lx Monte Carlo simulations (including hadron and parton cascades and string breaking models) 24.50.+g Direct reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Raabe, Nature (London) 431, 823 (2004).Google Scholar
  2. 2.
    A. Navin, Phys. Rev. C 70, 044601 (2004).Google Scholar
  3. 3.
    A. Pakou, Phys. Rev. C 76, 054601 (2007).Google Scholar
  4. 4.
    A. Pakou, preprint NPL08\_1, http://www.uoi.gr/ physics/npl/preprints.htm.Google Scholar
  5. 5.
    N. Keeley, K.W. Kemper, K. Rusek, Phys. Rev. C 65, 014601 (2001).Google Scholar
  6. 6.
    A. Pakou, Nucl. Phys. A 784, 13 (2007).Google Scholar
  7. 7.
    A. Pakou, Phys. Rev. C 69, 054602 (2004).Google Scholar
  8. 8.
    C.J.S. Scholtz, Z. Phys. A 325, 203 (1986).Google Scholar
  9. 9.
    F. Puhlhofer, CASCADE: A Nuclear Evaporation Code, Nucl. Phys. A 280, 267 (1979)Google Scholar
  10. 10.
    A. Pakou, Phys. Rev. C 71, 064602 (2005).Google Scholar
  11. 11.
    P.M. Endt, At. Data, Nucl. Data Tables 26, 47 (1981).Google Scholar
  12. 12.
    W.P. Alford, Nucl. Phys. A 454, 189 (1986).Google Scholar
  13. 13.
    O.F. Nemets, Nuclear Clusters in Atomic Nuclei and Many-Nucleon Transfer Reactions (Ukrainian Academy of Science, Institute for Nuclear R4esearch, Kiev, 1988).Google Scholar
  14. 14.
    R.L. Varner, Phys. Rep. 201, 57 (1991).Google Scholar
  15. 15.
    W. Wühr, Z. Phys. 269, 365 (1974).Google Scholar
  16. 16.
    J. Bang, C. Ginoux, Nucl. Phys. A 313, 119 (1976).Google Scholar
  17. 17.
    D.R. Tilley, Nucl. Phys. A 708, 3 (2002).Google Scholar
  18. 18.
    P.M. Endt, Nucl. Phys. A 521, 1 (1990).Google Scholar
  19. 19.
    R.J. Peterson, Nucl. Phys. A 408, 221 (1983).Google Scholar
  20. 20.
    A. Pakou, Phys. Lett. B 556, 21 (2003).Google Scholar
  21. 21.
    J.M. Figueira, Phys. Rev. C 75, 017602 (2007).Google Scholar
  22. 22.
    P. Schwandt, Phys. Rev. C 26, 369 (1982).Google Scholar
  23. 23.
    B. Buck, A.C. Merchant, J. Phys. G 14, L211 (1988).Google Scholar
  24. 24.
    Ricardo A. Broglia, Aage Winther, Heavy Ion Reactions, Vol. I: Elastic and Inelastic Reactions (The Benjamin/ Cummings Publishing Company, Inc, 1981).Google Scholar
  25. 25.
    A. Pakou, Phys. Lett. B 633, 691 (2006).Google Scholar
  26. 26.
    I.J. Thompson, Nucl. Phys. A 505, 84 (1989).Google Scholar
  27. 27.
    C.L. Jiang, Phys. Rev. Lett. 89, 052701 (2002).Google Scholar
  28. 28.
    K. Hagino, N. Rowley, M. Dasgupta, Phys. Rev. C 67, 054603 (2003).Google Scholar
  29. 29.
    Mandira Sinha, Phys. Rev. C 76, 027603 (2007).Google Scholar
  30. 30.
    C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973).Google Scholar
  31. 31.
    N. Alamanos, Phys. Rev. C 65, 054606 (2002).Google Scholar
  32. 32.
    J. Raynal, Phys. Rev. C 23, 2571 (1981).Google Scholar
  33. 33.
    D.T. Khoa, Phys. Lett. B 342, 6 (1995).Google Scholar
  34. 34.
    K. Washiyama, K. Hagino, M. Dasgupta, Phys. Rev. C 73, 034607 (2006).Google Scholar
  35. 35.
    G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979).Google Scholar
  36. 36.
    L. Trache, Phys. Rev. C 61, 024612 (2000).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Pakou
    • 1
    Email author
  • K. Rusek
    • 2
  • N. Alamanos
    • 3
  • X. Aslanoglou
    • 1
  • M. Kokkoris
    • 4
  • A. Lagoyannis
    • 5
  • T. J. Mertzimekis
    • 1
  • A. Musumarra
    • 6
  • N. G. Nicolis
    • 1
  • D. Pierroutsakou
    • 7
  • D. Roubos
    • 1
  1. 1.Department of PhysicsThe University of IoanninaIoanninaGreece
  2. 2.Department of Nuclear ReactionsThe Andrzej Sołtan Institute for Nuclear StudiesWarsawPoland
  3. 3.DSM/DAPNIA CEA SACLAYGif-sur-YvetteFrance
  4. 4.National Technical University of AthensAthensGreece
  5. 5.National Research Center DemokritosAthensGreece
  6. 6.Dipartimento di Metodologie Fisiche e Chimiche per l’Ingegneriadell’Universita di CataniaCataniaItaly
  7. 7.INFNSezione di NapoliNapoliItaly

Personalised recommendations