Advertisement

The European Physical Journal A

, Volume 38, Issue 3, pp 355–361 | Cite as

Scaling laws and higher-order effects in Coulomb excitation of neutron halo nuclei

  • S. Typel
  • G. BaurEmail author
Regular Article - Theoretical Physics

Abstract

Essential properties of halo nuclei can be described in terms of a few low-energy constants. For neutron halo nuclei, analytical results can be found for wave functions and electromagnetic transition matrix elements in simple but well-adapted models. These wave functions can be used to study nuclear reactions; an especially simple and instructive example is Coulomb excitation. A systematic expansion in terms of small parameters can be given. We present scaling laws for excitation amplitudes and cross-sections. The results can be used to analyze experiments like 11Be Coulomb excitation. They also serve as benchmark tests for more involved reaction theories.

PACS

25.70.De Coulomb excitation 23.20.Js Multipole matrix elements 27.20.+n 6\( \le\)A\( \le\)19 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.C. Summers, Phys. Lett. B 650, 124 (2007).Google Scholar
  2. 2.
    R. Anne, Z. Phys. A 352, 397 (1995).Google Scholar
  3. 3.
    T. Nakamura, Phys. Lett. B 394, 11 (1997).Google Scholar
  4. 4.
    M. Fauerbach, Phys. Rev. C 56, R1 (1997).Google Scholar
  5. 5.
    S. Typel, G. Baur, Phys. Lett. B 356, 186 (1995).Google Scholar
  6. 6.
    C.A. Bertulani, L.F. Canto, M.S. Hussein, Phys. Lett. B 353, 413 (1995).Google Scholar
  7. 7.
    S. Typel, G. Baur, Phys. Rev. Lett. 93, 142502 (2004).Google Scholar
  8. 8.
    S. Typel, G. Baur, Nucl. Phys. A 759, 247 (2005).Google Scholar
  9. 9.
    M.A. Nagarajan, S.M. Lenzi, A. Vitturi, Eur. Phys. J. A 24, 63 (2005).Google Scholar
  10. 10.
    Z.H. Liu, X.Z. Zhang, H.Q. Zhang, Phys. Rev. C 68, 024305 (2003).Google Scholar
  11. 11.
    P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003).Google Scholar
  12. 12.
    C.A. Bertulani, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 712, 37 (2002).Google Scholar
  13. 13.
    G. Goldstein, P. Capel, D. Baye, Phys. Rev. C 76, 024608 (2007)Google Scholar
  14. 14.
    G. Baur, S. Typel, J. Phys. G: Nucl. Part. Phys. 35, 0140218 (2008).Google Scholar
  15. 15.
    D.J. Millener, Phys. Rev. C 28, 497 (1983).Google Scholar
  16. 16.
    P. Descouvemont, Nucl. Phys. A 615, 261 (1997).Google Scholar
  17. 17.
    S. Typel, G. Baur, Phys. Rev. C 64, 0246101 (2001).Google Scholar
  18. 18.
    A. Winther, K. Alder, Electromagnetic Excitation (North-Holland, Amsterdam, 1975).Google Scholar
  19. 19.
    R. Chatterjee, L. Fortunato, A. Vitturi, Eur. Phys. J. A 35, 213 (2008).Google Scholar
  20. 20.
    S. Typel, G. Baur, Nucl. Phys. A 573, 486 (1994).Google Scholar
  21. 21.
    T. Baumann, Nature 449, 1022 (2007).Google Scholar
  22. 22.
    P.-H. Heenen, Nature 449, 992 (2007).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Excellence Cluster UniverseTechnische Universität MünchenGarchingGermany
  2. 2.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  3. 3.Institut für KernphysikForschungszentrum JülichJülichGermany
  4. 4.Jülich Centre for Hadron PhysicsForschungszentrum JülichJülichGermany

Personalised recommendations