The European Physical Journal A

, Volume 38, Issue 3, pp 251–255 | Cite as

Benford’s law and half-lives of unstable nuclei

Regular Article - Theoretical Physics

Abstract

We find that the experimental data of the \( \alpha\) -decay half-lives for 627 nuclei are in good agreement with Benford’s law, which states that the frequency of the appearance of each figure, 1-9, as the first significant digit, follows a logarithmic distribution favoring the smallest value. In order to generalize the applicability of Benford’s law, we systematically investigate the data of the total half-lives for 3177 nuclides in their ground and isomeric states, where the half-lives of many nuclei are determined by \( \beta\) -decay and spontaneous fission. We find that they are also in excellent agreement with Benford’s law, although they are determined by different interactions such as strong, weak and electromagnetic interactions. The possible physics behind them is discussed. Moreover, Benford’s law can be used to test theoretical models or methods.

PACS

02.50.Cw Probability theory 21.10.-k Properties of nuclei; nuclear energy levels 21.10.Tg Lifetimes, widths 23.60.+e \( \alpha\) decay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Newcomb, Am. J. Math. 4, 39 (1881).Google Scholar
  2. 2.
    F. Benford, Proc. Am. Philos. Soc. 78, 551 (1938).Google Scholar
  3. 3.
    T. Hill, Stat. Sci. 10, 354 (1995).Google Scholar
  4. 4.
    M.J. Nigrini, M.W. Browne, N.Y. Times, Science, August 4 (1998).Google Scholar
  5. 5.
    J. Burke, E. Kincanon, Am. J. Phys. 59, 952 (1991).Google Scholar
  6. 6.
    B. Buck, A.C. Merchant, S.M. Perez, Eur. J. Phys. 14, 59 (1993).Google Scholar
  7. 7.
    Jean-Christophe Pain, Phys. Rev. E 77, 012102 (2008).Google Scholar
  8. 8.
    G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003).Google Scholar
  9. 9.
    J. Torres, S. Fernández, A. Gamero, A. Sola, Eur. J. Phys. 28, L17 (2007).Google Scholar
  10. 10.
    R.A. Raimi, Am. Math. Mon. 83, 521 (1976).Google Scholar
  11. 11.
    Aditi Kar, Resonance 8, 30 (2003).Google Scholar
  12. 12.
    S.A. Gurvitz, G. Kalbermann, Phys. Rev. Lett. 59, 262 (1987).Google Scholar
  13. 13.
    P. Mohr, Phys. Rev. C 73, 031301 (2006).Google Scholar
  14. 14.
    Chang Xu, Zhongzhou Ren, Phys. Rev. C 73, 041301 (2006).Google Scholar
  15. 15.
    Chang Xu, Zhongzhou Ren, Phys. Rev. C 74, 014304 (2006).Google Scholar
  16. 16.
    N.G. Kelkar, H.M. Castañeda, Phys. Rev. C 76, 064605 (2007).Google Scholar
  17. 17.
    P. Möller, J.R. Nix, K.L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).Google Scholar
  18. 18.
    G. Royer, J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000).Google Scholar
  19. 19.
    Dongdong Ni, Zhongzhou Ren, Tiekuang Dong, Chang Xu, Phys. Rev. C 78, 044310 (2008).Google Scholar
  20. 20.
    V.E. Viola, G.T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966).Google Scholar
  21. 21.
    Tiekuang Dong, Zhongzhou Ren, Eur. Phys. J. A 26, 69 (2005).Google Scholar
  22. 22.
    H. Geiger, J.M. Nuttall, Philos. Mag. 22, 613 (1911)Google Scholar
  23. 23.
    L. Pietronero, E. Tosatti, V. Tosatti, A. Vespignani, Physica A 293, 297 (2001).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of PhysicsNanjing UniversityNanjingPRC
  2. 2.Center of Theoretical Nuclear PhysicsNational Laboratory of Heavy-Ion AcceleratorLanzhouPRC
  3. 3.Kavli Institute for Theoretical Physics ChinaBeijingPRC

Personalised recommendations