The European Physical Journal A

, Volume 38, Issue 3, pp 345–354 | Cite as

Equation of state and symmetry energy within the stability valley

Regular Article - Theoretical Physics

Abstract

We apply the direct variational method to derive the equation of state for finite nuclei within the stability valley. The extended Thomas-Fermi approximation for the energy functional with Skyrme forces is used. Applying the leptodermous expansion for the profile nucleon densities, we have studied the neutron coat and the isospin symmetry energy for neutron-rich nuclei. Using the equation of state for the pressure, we derive the region of spinodal instability of finite nuclei and its dependence on the mass number, the asymmetry parameter and the Skyrme force parameters. We suggest the procedure of derivation of the isospin symmetry energy from the analysis of the isospin shift of the chemical potential \( \Delta\) \( \lambda\) = \( \lambda_{{n}}^{}\) - \( \lambda_{{p}}^{}\) beyond the beta-stability line. We show that both the structure of the neutron coat and the position of the drip line depend significantly on the Skyrme force parameters.

PACS

21.65.-f Nuclear matter 21.10.Dr Binding energies and masses 21.60.-n Nuclear structure models and methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, Heidelberg, 1980).Google Scholar
  2. 2.
    W.D. Myers, W.J. Swiatecki, Ann. Phys. (N.Y.) 55, 395 (1969).Google Scholar
  3. 3.
    M.B. Tsang, C.K. Gelbke, X.D. Liu, Phys. Rev. C 64, 054615 (2001).Google Scholar
  4. 4.
    A. Ono, P. Danielewicz, W.A. Friedman, Phys. Rev. C 68, R051601 (2003).Google Scholar
  5. 5.
    J.B. Natowitz, K. Hagel, R. Wada., Phys. Rev. C 52, R2322 (1995).Google Scholar
  6. 6.
    J. Cibor, R. Wada, K. Hagel, Phys. Lett. B 473, 29 (2000).Google Scholar
  7. 7.
    M. Veselsky, R.W. Ibbotson, R. Laforest, Phys. Lett. B 497, 1 (2001).Google Scholar
  8. 8.
    W.A. Friedman, Phys. Rev. C 42, 667 (1990).Google Scholar
  9. 9.
    H.S. Xu, M.B. Tsang, T.X. Liu, Phys. Rev. Lett. 85, 716 (2000).Google Scholar
  10. 10.
    V.E. Viola, Nucl. Phys. A 734, 487 (2004).Google Scholar
  11. 11.
    W.D. Myers, W.J. Swiatecki, Phys. Rev. C 57, 3020 (1998).Google Scholar
  12. 12.
    W.D. Myers, W.J. Swiatecki, Phys. Rev. C 63, 034318 (2001).Google Scholar
  13. 13.
    P.-G. Reinhard, M. Bender, W. Nazarewicz, T. Vertse, Phys. Rev. C 73, 014309 (2006).Google Scholar
  14. 14.
    W. Satula, R.A. Wyss, M. Rafalski, Phys. Rev. C 74, 011301R (2006).Google Scholar
  15. 15.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
  16. 16.
    D.A. Kirznitz, Field Theoretical Methods in Many Body Systems (Pergamon, London, 1967).Google Scholar
  17. 17.
    M. Brack, C. Guet, H.-B. Håkansson, Phys. Rep. 123, 275 (1985).Google Scholar
  18. 18.
    M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).Google Scholar
  19. 19.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 1 (W. A. Benjamin, New York, 1969).Google Scholar
  20. 20.
    K.-F. Liu, H. Luo, Z. Ma, O. Shen, Nucl. Phys. A 534, 25 (1991).Google Scholar
  21. 21.
    E. Chabanat, P. Bonche, P. Haensel,, Nucl. Phys. A 627, 25 (1991).Google Scholar
  22. 22.
    K.C. Chung, C.S. Wang, A.J. Santiago, J.W. Zhang, Eur. Phys. J. A 10, 27 (2001).Google Scholar
  23. 23.
    M.J. Martin, Nucl. Data Sheets 108, 1583 (2007).Google Scholar
  24. 24.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1958).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Institute for Nuclear ResearchKievUkraine

Personalised recommendations