Advertisement

The European Physical Journal A

, Volume 38, Issue 3, pp 331–343 | Cite as

A practical guide to unravel time-like transition form factors

  • S. PacettiEmail author
Regular Article - Theoretical Physics

Abstract

A method to determine masses, widths and coupling constants of vector mesons, like \( \phi\)(1020) , \( \omega\)(782) and \( \rho^{0}_{}\)(770) recurrences is defined. Starting from data on decay rates and cross-sections for the processes: \( \phi\)M I \( \gamma\) , \( \phi\)M I e + e - and e + e -M I \( \phi\) , where MI is a pseudoscalar or scalar meson with isospin I = 0, 1 , the time-like transition form factors, which describe the vertex \( \phi\) \( \gamma\) M I , are parameterized using a vector-meson-propagators description in the low-energy region ( < 3-4 GeV), the quark-counting rule prescription for the high-energy behavior, and the analyticity imposed by means of the dispersion relations.

PACS

13.40.Hq Electromagnetic decays 11.55.Fv Dispersion relations 12.40.Vv Vector-meson dominance 11.80.Cr Kinematical properties (helicity and invariant amplitudes, kinematic singularities, etc.) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    KLOE Collaboration (B. Di Micco), arXiv:hep-ex/ 0410072Google Scholar
  2. 2.
    Jefferson Lab Hall A Collaboration (O. Gayou), Phys. Rev. Lett. 88, 092301 (2002).Google Scholar
  3. 3.
    L.G. Landsberg, Phys. Rep. 128, 301 (1985).Google Scholar
  4. 4.
    S.J. Brodsky, G.R. Farrar, Phys. Rev. Lett. 31, 1153 (1973)Google Scholar
  5. 5.
    G. Zweig, CERN report S419/TH412, (1964) unpublishedGoogle Scholar
  6. 6.
    R.L. Jaffe, Phys. Rep. 409, 1 (2005) (Nucl. Phys. Proc. Suppl. 142, 343 (2005)) and references therein.Google Scholar
  7. 7.
    S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 2848 (1981)Google Scholar
  8. 8.
    See, for instance, E.C. Tichmarsch, The Theory of Functions (Oxford University Press, London, 1939).Google Scholar
  9. 9.
    B.V. Geshkenbein, Yad. Fiz. 9, 1232 (1969).Google Scholar
  10. 10.
    C. Amsler, Phys. Lett. B 667, 1 (2008).Google Scholar
  11. 11.
    M.N. Achasov, V.M. Aulchenko, K.I. Beloborodov, A.V. Berdyugin, Phys. Lett. B 504, 275 (2001).Google Scholar
  12. 12.
    B AB AR Collaboration (B. Aubert), Phys. Rev. D 76, 092005 (2007) (Erratum D 77, 119902 (2008)).Google Scholar
  13. 13.
    B AB AR Collaboration (B. Aubert), Phys. Rev. D 77, 092002 (2008).Google Scholar
  14. 14.
    B AB AR Collaboration (B. Aubert), Phys. Rev. D 74, 111103 (2006).Google Scholar
  15. 15.
    B AB AR Collaboration (B. Aubert), Phys. Rev. D 74, 091103 (2006)Google Scholar
  16. 16.
    B AB AR Collaboration (B. Aubert), Phys. Rev. D 77, 092002 (2008).Google Scholar
  17. 17.
    V.N. Baier, V.S. Fadin, Phys. Lett. B 27, 223 (1968)Google Scholar
  18. 18.
    M.E.B. Franklin, Phys. Rev. Lett. 51, 963 (1983).Google Scholar
  19. 19.
    G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Enrico Fermi CenterRomeItaly
  2. 2.INFNLaboratori Nazionali di FrascatiFrascatiItaly

Personalised recommendations