Advertisement

The European Physical Journal A

, Volume 37, Issue 2, pp 159–167 | Cite as

Shifting the closed proton shell to Z = 122 —A possible scenario to understand the production of superheavy elements Z = 112−118

  • P. ArmbrusterEmail author
Regular Article - Experimental Physics

Abstract

The recent experiments at FLNR, Dubna, demonstrated that cross-sections to produce SHEs by 48Ca-induced reactions on actinide targets increase beyond Z = 111, reach a maximum of 5 pb at Z = 114 and fall below the 1 pb level at Z = 118. A scenario is proposed to understand the findings within the frame of former experimental results of heavy-element production and theoretical predictions about the stability of the nuclides concerned. New ingredients introduced are: 1) to shift the next proton shell beyond Pb from Z = 114 to Z = 122; 2) the isotopes of the elements Z = 112 to Z = 118 are deformed and their nuclei have oblate shapes; 3) the fission barriers around the next nucleus with doubly closed shells 306 184 122 are larger than the neutron separation energies and reach values in the range of 10MeV. The ascent of the flat top at 306 184 122 is described by the proposed scenario, which likewise excludes reaching the doubly closed shell region at the top by today’s experimental methods.

PACS

21.10.Dr Binding energies and masses 21.60.Fw Models based on group theory 25.60.Pj Fusion reactions 27.90.+b A ≥ 220 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.T. Oganessian et al., Phys. Rev. Lett. 83, 3154 (1999).3154CrossRefGoogle Scholar
  2. 2.
    Y.T. Oganessian et al., J. Phys. G Nucl. Part. Phys. 34, R.165 (2007).CrossRefADSGoogle Scholar
  3. 3.
    R. Eichler et al., Nature 83, 487 (2007).Google Scholar
  4. 4.
    S. Hofmann et al., Eur. Phys. J. A 32, 251 (2007).CrossRefADSGoogle Scholar
  5. 5.
    Y.T. Oganessian, TAN07, Davos, unpublished (2007).Google Scholar
  6. 6.
    P. Armbruster, Annu. Rev. Nucl. Part. Sci. 35, 135 (1985).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    P. Armbruster, Annu. Rev. Nucl. Part. Sci. 50, 411 (2000).CrossRefADSGoogle Scholar
  8. 8.
    H. Meldner, Ark. Fys. 36, 593 (1967).Google Scholar
  9. 9.
    A. Sobiczewski, F. Gareev, B.N. Kalinkin, Phys. Lett. 22, 500 (1966).CrossRefADSGoogle Scholar
  10. 10.
    M. Göppert-Mayer, H.D. Jensen, Elementary Theory of Nuclear Shell Structure (Wiley, New York, NY, 1955).zbMATHGoogle Scholar
  11. 11.
    J.F. Berger et al., Nucl. Phys. A 685, 1c (2001).CrossRefADSGoogle Scholar
  12. 12.
    M. Bender et al., Phys. Lett. B 515, 42 (2001).CrossRefADSGoogle Scholar
  13. 13.
    G. Audi et al., Nucl. Phys. A 729 (2003).Google Scholar
  14. 14.
    F. Jachello, Phys. Rev. Lett. 87, 052502 (2001).CrossRefADSGoogle Scholar
  15. 15.
    R. Casten, Eur. Phys. J. A 20, 167 (2004).CrossRefADSGoogle Scholar
  16. 16.
    M. Bernas et al., Phys. Lett. B 415, 111 (1997).CrossRefADSGoogle Scholar
  17. 17.
    J. Jolie et al., Phys. Rev. Lett. 87, 162501 (2000).CrossRefADSGoogle Scholar
  18. 18.
    J. Dvorak et al., Phys. Rev. Lett. 97, 242502 (2006).CrossRefADSGoogle Scholar
  19. 19.
    P. Reiter et al., Phys. Rev. Lett. 82, 809 (1999).CrossRefGoogle Scholar
  20. 20.
    M. Leino et al., Eur. Phys. J. A 6, 63 (1999).ADSGoogle Scholar
  21. 21.
    P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995).CrossRefADSGoogle Scholar
  22. 22.
    A. Sobiczewski, Z. Patyk, S. Cwiok, Phys. Lett. B 186, 6 (1987).CrossRefADSGoogle Scholar
  23. 23.
    P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).CrossRefADSGoogle Scholar
  24. 24.
    C. Schmitt et al., Phys. Rev Lett. 99, 042701 (2007).CrossRefADSGoogle Scholar
  25. 25.
    K.H. Schmidt et al., Nucl. Phys. A 665, 221 (2000).CrossRefADSGoogle Scholar
  26. 26.
    K.H. Schmidt, W. Morawek, Rep. Progr. Phys. 54, 949 (1991).CrossRefADSGoogle Scholar
  27. 27.
    A.R. Junghans et al., Nucl. Phys. A 629, 635 (1998).CrossRefADSGoogle Scholar
  28. 28.
    A. Heinz et al., Nucl. Phys. A 713, 3 (2003).CrossRefADSGoogle Scholar
  29. 29.
    J.R. Nix, Annu. Rev. Nucl. Part. Sci. 22, 65 (1972).CrossRefADSGoogle Scholar
  30. 30.
    M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).CrossRefADSGoogle Scholar
  31. 31.
    R. Smolanczuk, Phys. Rev. C 56, 812 (1997).CrossRefADSGoogle Scholar
  32. 32.
    Y.T. Oganessian, A.S. Iljinov, A.G. Demin, S.P. Tretyakova, Nucl. Phys. A 239, 353 (1975).CrossRefADSGoogle Scholar
  33. 33.
    K. Morita et al., J. Phys. Soc. Jpn. 73, 2593 (2004).CrossRefADSGoogle Scholar
  34. 34.
    T. Sikkeland, Ark. Fys. 36, 539 (1967).Google Scholar
  35. 35.
    P. Armbruster et al., GSI-Jahresberichte 1976/77, GSIDarmstadt, J1-1977/78.Google Scholar
  36. 36.
    K.E. Gregorich et al., LBNL-Report 63617 (2007).Google Scholar
  37. 37.
    W. Swiatecki, K. Siwek-Wilczynska, J. Wilczynski, Phys. Rev. C 71, 014602 (2005).CrossRefADSGoogle Scholar
  38. 38.
    Y. Aritomo, M. Ohta, Nucl. Phys. A 764, 149 (2006).CrossRefADSGoogle Scholar
  39. 39.
    Y.T. Oganessian et al., Phys. Rev. C 70, 064609 (2004).CrossRefADSGoogle Scholar
  40. 40.
    A.V. Ignatyuk et al., Sov. J. Nucl. Phys. 21, 612 (1975).Google Scholar
  41. 41.
    Y.A. Lazarev et al., Phys. Rev. Lett. 75, 1903 (1995).CrossRefADSGoogle Scholar
  42. 42.
    S. Hofmann, private communication (2007).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.GSI DarmstadtDarmstadtGermany

Personalised recommendations