Advertisement

The European Physical Journal A

, Volume 35, Issue 3, pp 267–269 | Cite as

Baryon octupole moments

  • A. J. Buchmann
  • E. M. Henley
Regular Article - Theoretical Physics

Abstract.

We report on a calculation of higher electromagnetic multipole moments of baryons in a non-covariant quark model approach. The employed method is based on the underlying spin-flavor symmetry of the strong interaction and its breaking. We present results on magnetic octupole moments of decuplet baryons and discuss their implications.

PACS.

13.40.Em Electric and magnetic moments 14.20.-c Baryons (including antiparticles) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Bernstein, C.N. Papanicolas, AIP Conf. Proc. 904, 1 (2007) hep-ph/0708.0008.CrossRefADSGoogle Scholar
  2. 2.
    L. Tiator, D. Drechsel, S.S. Kamalov, S.N. Yang, Eur. Phys. J. A 17, 357 (2003).CrossRefADSGoogle Scholar
  3. 3.
    G. Blanpied, Phys. Rev. C 64, 025203 (2001).CrossRefADSGoogle Scholar
  4. 4.
    A.J. Buchmann, E. Hernández, A. Faessler, Phys. Rev. C 55, 448 (1997).CrossRefADSGoogle Scholar
  5. 5.
    A.J. Buchmann, E.M. Henley, Phys. Rev. C 63, 015202 (2001).CrossRefADSGoogle Scholar
  6. 6.
    V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007)CrossRefADSGoogle Scholar
  7. 7.
    M.N. Butler, M.J. Savage, R.P. Springer, Phys. Rev. D 49, 3459 (1994)CrossRefADSGoogle Scholar
  8. 8.
    M. Kotulla, Phys. Rev. Lett. 89, 272001 (2002).CrossRefADSGoogle Scholar
  9. 9.
    G. Morpurgo, Phys. Rev. D 40, 2997 (1989).CrossRefADSGoogle Scholar
  10. 10.
    A.J. Buchmann, R.F. Lebed, Phys. Rev. D 62, 096005 (2000)CrossRefADSGoogle Scholar
  11. 11.
    G. Dillon, G. Morpurgo, Phys. Lett. B 448, 107 (1999).CrossRefADSGoogle Scholar
  12. 12.
    A.J. Buchmann, E.M. Henley, Phys. Rev. D 65, 073017 (2002). In tables I and II, replace $C$ by $2C$.CrossRefADSGoogle Scholar
  13. 13.
    T.W. Donnelly, I. Sick, Rev. Mod. Phys. 56, 461 (1984).CrossRefADSGoogle Scholar
  14. 14.
    If two of these had the same particle index, spin commutation relations would reduce them to a single Pauli matrix.Google Scholar
  15. 15.
    F. Gürsey, L.A. Radicati, Phys. Rev. Lett. 13, 173 (1964)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    For ground-state baryons an allowed operator $\Omega$ must transform according to one of the irreducible representations found in the product $\bar{\mathbf{56}} \times \mathbf{56} = \mathbf{1} + \mathbf{35} + \mathbf{405} + \mathbf{2695}$. Here, the $\mathbf{1}$, $\mathbf{35}$, $\mathbf{405}$, and $\mathbf{2695}$ dimensional representations, are respectively connected with zero-, one-, two-, and three-body operators. Because the $\mathbf{2695}$ occurs only once, there is a unique three-quark magnetic octupole operator.Google Scholar
  17. 17.
    E.M. Henley, W. Thirring, Elementary Quantum Field Theory (McGraw-Hill, New-York, 1962).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2008

Authors and Affiliations

  • A. J. Buchmann
    • 1
  • E. M. Henley
    • 2
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenGermany
  2. 2.Department of Physics and Institute for Nuclear TheoryUniversity of WashingtonSeattleUSA

Personalised recommendations