The European Physical Journal A

, Volume 35, Issue 3, pp 329–331 | Cite as

Baryon resonances and strong decays

  • T. Melde
  • W. Plessas
Regular Article - Theoretical Physics


Constituent quark models provide a reasonable description of the baryon mass spectra. However, even in the light- and strange-flavor sectors several intriguing shortcomings remain. Especially with regard to strong decays of baryon resonances no consistent picture has so far emerged, and the existing experimental data cannot be explained in a satisfactory manner. Recently, first covariant calculations with modern constituent quark models have become available for all π , η , and K decay modes of the low-lying light and strange baryons. They generally produced a remarkable underestimation of the experimental data for partial decay widths. We summarize the main results and discuss their impact on the classification of baryon resonances into flavor multiplets. These findings are of particular relevance for future efforts in the experimental investigation of baryon resonances.


12.39.Ki Relativistic quark model 13.30.-a Decays of baryons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Plessas, Few-Body Syst. Suppl. 15, 139 (2003).Google Scholar
  2. 2.
    F. Stancu, P. Stassart, Phys. Rev. D 39, 343 (1989).CrossRefADSGoogle Scholar
  3. 3.
    S. Capstick, W. Roberts, Phys. Rev. D 47, 1994 (1993).CrossRefADSGoogle Scholar
  4. 4.
    A. Krassnigg, Few Body Syst. Suppl. 10, 391 (1999).Google Scholar
  5. 5.
    W. Plessas, Few Body Syst. Suppl. 11, 29 (1999).Google Scholar
  6. 6.
    L. Theussl, R.F. Wagenbrunn, B. Desplanques, W. Plessas, Eur. Phys. J. A 12, 91 (2001).CrossRefADSGoogle Scholar
  7. 7.
    T. Melde, W. Plessas, R.F. Wagenbrunn, Phys. Rev. C 72, 015207 (2005)CrossRefADSGoogle Scholar
  8. 8.
    T. Melde, W. Plessas, B. Sengl, Phys. Rev. C 76, 025204 (2007).CrossRefADSGoogle Scholar
  9. 9.
    B. Sengl, T. Melde, W. Plessas, Phys. Rev. D 76, 054008 (2007).CrossRefADSGoogle Scholar
  10. 10.
    B. Metsch, AIP Conf. Proc. 717, 646 (2004).CrossRefADSGoogle Scholar
  11. 11.
    S. Migura, PhD Thesis, University of Bonn (2007).Google Scholar
  12. 12.
    W.-M. Yao, J. Phys. G 33, 1 (2006).CrossRefADSGoogle Scholar
  13. 13.
    L.Y. Glozman, W. Plessas, K. Varga, R.F. Wagenbrunn, Phys. Rev. D 58, 094030 (1998).CrossRefADSGoogle Scholar
  14. 14.
    V. Guzey, M.V. Polyakov, hep-ph/0512355 (2005).Google Scholar
  15. 15.
    N. Matagne, F. Stancu, Phys. Rev. D 74, 034014 (2006).CrossRefADSGoogle Scholar
  16. 16.
    T. Melde, L. Canton, W. Plessas, R.F. Wagenbrunn, Eur. Phys. J. A 25, 97 (2005).CrossRefGoogle Scholar
  17. 17.
    T. Melde, Phys. Rev. D 76, 074020 (2007).CrossRefADSGoogle Scholar
  18. 18.
    F. Gross, Y. Surya, Phys. Rev. C 47, 703 (1993).CrossRefADSGoogle Scholar
  19. 19.
    Y. Surya, F. Gross, Phys. Rev. C 53, 2422 (1996).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2008

Authors and Affiliations

  • T. Melde
    • 1
  • W. Plessas
    • 1
  1. 1.Institute for Physics, Theoretical PhysicsGrazAustria

Personalised recommendations