The European Physical Journal A

, Volume 35, Issue 2, pp 243–252 | Cite as

Quantum mechanical ab initio simulation of the electron screening effect in metal deuteride crystals

  • A. Huke
  • K. Czerski
  • S. M. Chun
  • A. Biller
  • P. Heide
Regular Article - Theoretical Physics

Abstract.

In antecedent experiments the electron screening energies of the d+d reactions in metallic environments have been determined to be enhanced by an order of magnitude in comparison to the case of gaseous deuterium targets. The analytical models describing averaged material properties have not been able to explain the experimental results so far. Therefore, a first effort has been undertaken to simulate the dynamics of reacting deuterons in a metallic lattice by means of an ab initio Hartree-Fock calculation of the total electrostatic force between the lattice and the successively approaching deuterons via path integration. The calculations have been performed for Li and Ta, clearly showing a migration of electrons from host metallic to the deuterium atoms. However, in order to avoid more of the necessary simplifications in the model the utilization of a massive parallel supercomputer would be required.

PACS.

25.60.Pj Fusion reactions 82.20.Wt Computational modeling; simulation 34.10.+x General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.) 26.20.-f Hydrostatic stellar nucleosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Czerski, A. Huke, P. Heide, M. Hoeft, G. Ruprecht, in Nuclei in the Cosmos V, Proceedings of the International Symposium on Nuclear Astrophysics, Volos, Greece, July 6-11, 1998, edited by N. Prantzos, S. Harissopulos (Editions Frontières) p. 152.Google Scholar
  2. 2.
    K. Czerski, A. Huke, A. Biller, P. Heide, M. Hoeft, G. Ruprecht, Europhys. Lett. 54, 449 (2001).CrossRefADSGoogle Scholar
  3. 3.
    A. Huke, Die Deuteronen-Fusionsreaktionen in Metallen, PhD Thesis, Technische Universität Berlin, 2002, http:// edocs.tu-berlin.de/diss/2002/huke\_armin.htm.Google Scholar
  4. 4.
    H. Yuki, J. Kasagi, A.G. Lipson, T. Ohtsuki, T. Baba, T. Noda, B.F. Lyakhov, N. Asami, JETP Lett. 68, 823 (1998).CrossRefADSGoogle Scholar
  5. 5.
    J. Kasagi, H. Yuki, T. Baba, T. Noda, T. Ohtsuki, A.G. Lipson, J. Phys. Soc. Jpn. 71, 2281 (2002).CrossRefGoogle Scholar
  6. 6.
    F. Raiola, Eur. Phys. J. A 13, 377 (2002).CrossRefADSGoogle Scholar
  7. 7.
    F. Raiola, Phys. Lett. B 547, 193 (2002).CrossRefADSGoogle Scholar
  8. 8.
    C. Bonomo, Nucl. Phys. A 719, 37c (2003).CrossRefADSGoogle Scholar
  9. 9.
    F. Raiola, Eur. Phys. J. A 19, 283 (2004).CrossRefADSGoogle Scholar
  10. 10.
    U. Greife, F. Gorris, M. Junker, C. Rolfs, D. Zahnow, Z. Phys. A 351, 107 (1995).CrossRefADSGoogle Scholar
  11. 11.
    A. Huke, K. Czerski, P. Heide, Nucl. Instrum. Methods B 256, 599 (2007).CrossRefADSGoogle Scholar
  12. 12.
    H. J. Assenbaum, K. Langanke, C. Rolfs, Z. Phys. A 327, 461 (1987).ADSGoogle Scholar
  13. 13.
    K. Czerski, A. Huke, P. Heide, G. Ruprecht, Europhys. Lett. 68, 363 (2004).CrossRefADSGoogle Scholar
  14. 14.
    K. Czerski, A. Huke, P. Heide, G. Ruprecht, Eur. Phys. J. A 27, s01, 83 (2006).Google Scholar
  15. 15.
    S. Ichimaru, Rev. Mod. Phys. 65, 252 (1993).CrossRefADSGoogle Scholar
  16. 16.
    A. Huke, K. Czerski, G. Ruprecht, N. Targosz, W. Żebrowski, P. Heide, submitted to Phys. Rev. C.Google Scholar
  17. 17.
    T.D. Shoppa, M. Jeng, S.E. Koonin, K. Langanke, R. Seki, Nucl. Phys. A 605, 387 (1996).CrossRefADSGoogle Scholar
  18. 18.
    Hans-Herbert Schmidtke, Quantenchemie, 2nd edition (VCH, Weinheim, 1994).Google Scholar
  19. 19.
    A. Huke, K. Czerski, T. Dorsch, A. Biller, P. Heide, G. Ruprecht, Eur. Phys. J. A 27, s01, 187 (2006).Google Scholar
  20. 20.
    M. Born, J.R. Oppenheimer, Ann. Phys. (Leipzig) 84, 457 (1927).ADSGoogle Scholar
  21. 21.
    D.R. Hartree, The calculation of atomic structures (John Wiley, New York, 1957).Google Scholar
  22. 22.
    I.N. Levine, Quantum Chemistry, 4th edition (Prentice Hall, Englewood Cliffs, 1991).Google Scholar
  23. 23.
    A. Szabo, N.S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, New York, 1989).Google Scholar
  24. 24.
    Albert Messiah, Quantenmechanik, Vol. 1, 2nd edition (Walter de Gruyter Verlag, Berlin, 1991).Google Scholar
  25. 25.
    A. Goldberg, H.M. Schey, J.L. Schwartz, Am. J. Phys. 35, 177 (1967).CrossRefADSGoogle Scholar
  26. 26.
    I. Galbraith, Y.S. Ching, E. Abraham, Am. J. Phys. 52, 60 (1984).CrossRefADSGoogle Scholar
  27. 27.
    T.D. Shoppa, S.E. Koonin, K. Langanke, R. Seki, Phys. Rev. C 48, 837 (1993).CrossRefADSGoogle Scholar
  28. 28.
    P. Čarsky, M. Urban, Ab initio Calculations, in Lect. Notes Chem., No. 16 (Springer, Berlin, 1980).Google Scholar
  29. 29.
    L. Zülicke, Quantenchemie, Vol. 1 (Deutscher Verlag der Wissenschaften, Berlin, 1973).Google Scholar
  30. 30.
    R.J. Bartlett, J. Phys. Chem. 93, 1697 (1989).CrossRefGoogle Scholar
  31. 31.
    C. Møller, M.S. Plesset, Phys. Rev. 46, 618 (1934).CrossRefADSMATHGoogle Scholar
  32. 32.
    R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, 1989).Google Scholar
  33. 33.
    J.K. Labanowski, J.W. Andzelm (Editors), Density Functional Methods in Chemistry (Springer, Berlin, 1991).Google Scholar
  34. 34.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964).CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965).CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    T. Ziegler, Chem. Rev. 91, 651 (1991).CrossRefGoogle Scholar
  37. 37.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980).ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    A.D. Becke, J. Chem. Phys. 88, 1053 (1988).CrossRefADSGoogle Scholar
  39. 39.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefADSGoogle Scholar
  40. 40.
    B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989).CrossRefADSGoogle Scholar
  41. 41.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefADSGoogle Scholar
  42. 42.
    B.G. Johnson, P.M.W. Gill, J.A. Pople, J. Chem. Phys. 98, 5612 (1993).CrossRefADSGoogle Scholar
  43. 43.
    James B. Foresman, Æleen Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edition (Gaussian Inc., Pittsburgh, 1996). Google Scholar
  44. 44.
    C.C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).MATHCrossRefADSGoogle Scholar
  45. 45.
    G.G. Hall, Proc. R. Soc. London, Ser. A 205, 541 (1951).MATHGoogle Scholar
  46. 46.
    J.P. Pople, R.K. Nesbet, J. Chem. Phys. 22, 571 (1954).CrossRefADSGoogle Scholar
  47. 47.
    H. Preuß, Grundriß der Quantenchemie, in Hochschultaschenbücher, Number 10 (Bibliographisches Institut, Mannheim, 1962).Google Scholar
  48. 48.
    W.J. Hehre, R.F. Stewart, J.A. Pople, J. Chem. Phys. 51, 2657 (1969).CrossRefADSGoogle Scholar
  49. 49.
    J.B. Collins, P.v.R. Schleyer, J.S. Blinkley, J.A. Pople, J. Chem. Phys. 64, 5142 (1976).CrossRefADSGoogle Scholar
  50. 50.
    T.H. Dunning jr., P.J. Hay, in Modern Theoretical Chemistry, edited by H.F. Schaefer III (Plenum Press, New York, 1976) pp. 1-28.Google Scholar
  51. 51.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985).CrossRefADSGoogle Scholar
  52. 52.
    W.R. Wadt, P.J. Hay, J. Chem. Phys. 82, 284 (1985).CrossRefADSGoogle Scholar
  53. 53.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985).CrossRefADSGoogle Scholar
  54. 54.
    J.S. Blinkley, J.A. Pople, W.J. Hehre, J. Am. Chem. Soc. 102, 939 (1980).CrossRefGoogle Scholar
  55. 55.
    M.S. Gordon, J.S. Blinkley, J.A. Pople, W.J. Pietro, W.J. Hehre, J. Am. Chem. Soc. 104, 2797 (1982).CrossRefGoogle Scholar
  56. 56.
    W.J. Pietro, M.M. Francl, W.J. Hehre, D.J. Defrees, J.A. Pople, J.S. Blinkley, J. Am. Chem. Soc. 104, 5039 (1982).CrossRefGoogle Scholar
  57. 57.
    R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54, 724 (1971).CrossRefADSGoogle Scholar
  58. 58.
    W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257 (1972).CrossRefADSGoogle Scholar
  59. 59.
    P.C. Hariharan, J.A. Pople, Mol. Phys. 27, 209 (1974).CrossRefADSGoogle Scholar
  60. 60.
    M.S. Gordon, Chem. Phys. Lett. 76, 163 (1980).CrossRefADSGoogle Scholar
  61. 61.
    P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213 (1973).CrossRefGoogle Scholar
  62. 62.
    G.A. Petersson, A. Bennet, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley, J. Mantzaris, J. Chem. Phys. 89, 2193 (1988).CrossRefADSGoogle Scholar
  63. 63.
    G.A. Petersson, M.A. Al-Laham, J. Chem. Phys. 94, 6091 (1991).CrossRefADSGoogle Scholar
  64. 64.
    A.D. McLean, G.S. Chandler, J. Chem. Phys. 72, 5639 (1980).CrossRefADSGoogle Scholar
  65. 65.
    R. Krishnan, J.S. Blinkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980).CrossRefADSMathSciNetGoogle Scholar
  66. 66.
    A.J.H. Wachters, J. Chem. Phys. 52, 1033 (1970).CrossRefADSGoogle Scholar
  67. 67.
    P.J. Hay, J. Chem. Phys. 66, 4377 (1977).CrossRefADSGoogle Scholar
  68. 68.
    K. Raghavachari, G.W. Trucks, J. Chem. Phys. 91, 1062 (1989).CrossRefADSGoogle Scholar
  69. 69.
    R.W.G. Wyckoff, Crystal Structures, Vols. I--IV, 2nd edition (Wiley, New York, 1962-1966).Google Scholar
  70. 70.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople, Gaussian 94, revision e.1. Technical report, Gaussian Inc., Pittsburgh, 1995.Google Scholar
  71. 71.
    K. Czerski, A. Huke, P. Heide, G. Schiwietz, Nucl. Instrum. Methods B 193, 183 (2002).CrossRefADSGoogle Scholar
  72. 72.
    Reinhard Starkl, Neue analytische Methoden der mathematischen Physik, 1st edition (VWF, Verlag für Wissenschaft und Forschung, Berlin, 1999).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2008

Authors and Affiliations

  • A. Huke
    • 1
  • K. Czerski
    • 1
    • 2
  • S. M. Chun
    • 1
  • A. Biller
    • 1
  • P. Heide
    • 1
  1. 1.Institut für Optik und Atomare PhysikTechnische Universität BerlinBerlinGermany
  2. 2.Institute of PhysicsUniversity of SzczecinSzczecinPoland

Personalised recommendations