The European Physical Journal A

, Volume 35, Issue 1, pp 1–29

ISOLTRAP: An on-line Penning trap for mass spectrometry on short-lived nuclides

  • M. Mukherjee
  • D. Beck
  • K. Blaum
  • G. Bollen
  • J. Dilling
  • S. George
  • F. Herfurth
  • A. Herlert
  • A. Kellerbauer
  • H. -J. Kluge
  • S. Schwarz
  • L. Schweikhard
  • C. Yazidjian
Open Access
Regular Article - Experimental Physics

Abstract.

ISOLTRAP is a Penning trap mass spectrometer for high-precision mass measurements on short-lived nuclides installed at the on-line isotope separator ISOLDE at CERN. The masses of close to 300 radionuclides have been determined up to now. The applicability of Penning trap mass spectrometry to mass measurements of exotic nuclei has been extended considerably at ISOLTRAP by improving and developing this double Penning trap mass spectrometer over the past two decades. The accurate determination of nuclear binding energies far from stability includes nuclei that are produced at rates less than 100 ions/s and with half-lives well below 100ms. The mass-resolving power reaches 107 corresponding to 10keV for medium heavy nuclei and the uncertainty of the resulting mass values has been pushed down to below 10-8. The article describes technical developments achieved since 1996 and the present performance of ISOLTRAP.

PACS.

07.75.+h Mass spectrometers 21.10.Dr Binding energies and masses 32.10.Bi Atomic masses, mass spectra, abundances, and isotopes 37.10.Ty Ion trapping 

References

  1. 1.
    G. Audi, Nucl. Phys. A 729, 337 (2003).ADSGoogle Scholar
  2. 2.
    K. Blaum, Phys. Rep. 425, 1 (2006).ADSGoogle Scholar
  3. 3.
    D. Lunney, Rev. Mod. Phys. 75, 1021 (2003).ADSGoogle Scholar
  4. 4.
    M. Bender, Rev. Mod. Phys. 75, 121 (2003).ADSMathSciNetGoogle Scholar
  5. 5.
    G.A. Lalazissis, Phys. Rev. C 58, 1467 (1998).ADSGoogle Scholar
  6. 6.
    S. Hofmann, Rev. Mod. Phys. 72, 733 (2000).ADSGoogle Scholar
  7. 7.
    G.R. Henry, Phys. Rev. 176, 1126 (1968).ADSGoogle Scholar
  8. 8.
    E. Caurier, Rev. Mod. Phys. 77, 427 (2005).ADSGoogle Scholar
  9. 9.
    R.B. Cakirli, Phys. Rev. Lett. 94, 092501 (2005).ADSGoogle Scholar
  10. 10.
    R.B. Cakirli, Phys. Rev. Lett. 95, 119903 (2005).ADSGoogle Scholar
  11. 11.
    S. Bishop, Phys. Rev. Lett. 90, 162501 (2003).ADSGoogle Scholar
  12. 12.
    J. Hardy, I.S. Towner, Phys. Rev. Lett. 94, 092502 (2005).ADSGoogle Scholar
  13. 13.
    J. Hardy, Phys. Rev. C 71, 055501 (2005).ADSGoogle Scholar
  14. 14.
    G. Bollen, Nucl. Instrum. Methods A 368, 675 (1996).ADSGoogle Scholar
  15. 15.
    F. Herfurth, J. Phys. B 36, 931 (2003).ADSGoogle Scholar
  16. 16.
    K. Blaum, Nucl. Instrum. Methods B 204, 478 (2003).ADSGoogle Scholar
  17. 17.
    H.-J. Kluge, Nucl. Phys. A 746, 200c (2004).ADSGoogle Scholar
  18. 18.
    G. Bollen, Nucl. Instrum. Methods A 532, 203 (2004).ADSGoogle Scholar
  19. 19.
    J. Clark, Nucl. Instrum. Methods B 204, 487 (2003).ADSGoogle Scholar
  20. 20.
    A. Jokinen, Int. J. Mass Spectrom. 251, 204 (2006).ADSGoogle Scholar
  21. 21.
    M. Block, Eur. Phys. J. A 25, 49 (2005).Google Scholar
  22. 22.
    J. Dilling, Int. J. Mass Spectrom. 251, 198 (2006).ADSGoogle Scholar
  23. 23.
    H. Schnatz, Nucl. Instrum. Methods A 251, 17 (1986).ADSGoogle Scholar
  24. 24.
    G. Bollen, J. Appl. Phys. 68, 4355 (1990).ADSGoogle Scholar
  25. 25.
    G. Savard, Phys. Lett. A 158, 247 (1991).ADSGoogle Scholar
  26. 26.
    K. Blaum, J. Phys. B 36, 921 (2003).ADSGoogle Scholar
  27. 27.
    F. Herfurth, Nucl. Instrum. Methods A 469, 254 (2001).ADSGoogle Scholar
  28. 28.
    E. Kugler, Hyperfine Interact. 129, 23 (2000).ADSGoogle Scholar
  29. 29.
    W. Paul, Z. Naturforsch. 8a, 448 (1953).ADSGoogle Scholar
  30. 30.
    H.G. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1967).CrossRefGoogle Scholar
  31. 31.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990).ADSGoogle Scholar
  32. 32.
    H. Dehmelt, Rev. Mod. Phys. 62, 525 (1990).ADSGoogle Scholar
  33. 33.
    P.H. Dawson, Quadrupole Mass Spectrometry and its applications (Elsevier, Amsterdam, 1995).Google Scholar
  34. 34.
    P.K. Ghosh, Ion traps (Oxford University Press, New York, 1995).Google Scholar
  35. 35.
    K. Blaum, Int. J. Mass Spectrom. 181, 67 (1998).Google Scholar
  36. 36.
    A. Nieminen, Nucl. Instrum. Methods A 469, 244 (2001).ADSGoogle Scholar
  37. 37.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).ADSGoogle Scholar
  38. 38.
    M. Kretzschmar, Eur. J. Phys. 12, 240 (1991).Google Scholar
  39. 39.
    S. Schwarz, Nucl. Instrum. Methods A 566, 233 (2006).ADSGoogle Scholar
  40. 40.
    E.W. McDaniel, The mobility and diffusion of ions in gases (Wiley, 1973).Google Scholar
  41. 41.
    A. Kellerbauer, Nucl. Phys. A 701, 565c (2002).ADSGoogle Scholar
  42. 42.
    H. Raimbault-Hartmann, Nucl. Instrum. Methods B 126, 382 (1997).Google Scholar
  43. 43.
    F. Bloch, Physica 19, 821 (1953).ADSGoogle Scholar
  44. 44.
    G. Gräff, Z. Phys. A 297, 35 (1980).Google Scholar
  45. 45.
    M. König, Int. J. Mass Spectrom. Ion Process. 142, 95 (1995).Google Scholar
  46. 46.
    K. Blaum, Eur. Phys. J. A 15, 254 (2002).ADSGoogle Scholar
  47. 47.
    K. Blaum, Anal. Bioanal. Chem. 377, 1133 (2003).Google Scholar
  48. 48.
    R.S. Van Dyck jr., Phys. Rev. A 40, 6308 (1989).ADSGoogle Scholar
  49. 49.
    E.A. Cornell, Phys. Rev. Lett. 63, 1674 (1989).ADSGoogle Scholar
  50. 50.
    W. Jhe, Phys. Scr. 46, 264 (1992).ADSGoogle Scholar
  51. 51.
    G. Bollen, Phys. Scr. 46, 581 (1992).ADSGoogle Scholar
  52. 52.
    I. Bergström, Nucl. Instrum. Methods A 487, 618 (2002).ADSGoogle Scholar
  53. 53.
    K. Jungmann, Phys. Rev. A 36, 3451 (1987).ADSGoogle Scholar
  54. 54.
    J.B. Jeffries, Int. J. Mass Spectrom. Ion Process. 54, 169 (1983).Google Scholar
  55. 55.
    G. Bollen, Phys. Rev. C 46, R2140 (1992).Google Scholar
  56. 56.
    G. Gabrielse, Hyperfine Interact. 81, 5 (1993).ADSGoogle Scholar
  57. 57.
    S. Rainville, Science 303, 334 (2004).ADSGoogle Scholar
  58. 58.
    D.J. Wineland, J. Appl. Phys. 46, 919 (1975).ADSGoogle Scholar
  59. 59.
    A. Kellerbauer, Eur. Phys. J. D 22, 53 (2003).ADSGoogle Scholar
  60. 60.
    G. Bollen, Hyperfine Interact. 38, 793 (1987).ADSGoogle Scholar
  61. 61.
    H.-J. Kluge, Phys. Scr. T 22, 85 (1988).ADSGoogle Scholar
  62. 62.
    M. Lindroos, Nucl. Instrum. Methods B 205, 730 (2003).Google Scholar
  63. 63.
    U. Köster, Nucl. Instrum. Methods B 204, 347 (2003).ADSGoogle Scholar
  64. 64.
    C. Scheidenberger, Nucl. Phys. A 701, 574c (2002).ADSGoogle Scholar
  65. 65.
    K. Blaum, Eur. Phys. J. D 24, 145 (2003).ADSGoogle Scholar
  66. 66.
    L. Schweikhard, Eur. J. Mass Spectrom. 11, 457 (2005).Google Scholar
  67. 67.
    S. Schwarz, PhD Thesis, Johannes Gutenberg University, Mainz, ISBN 3-8288-0735-6 (1999).Google Scholar
  68. 68.
    A. Kellerbauer, Nucl. Instrum. Methods A 469, 276 (2001).ADSGoogle Scholar
  69. 69.
    D. Beck, Eur. Phys. J. A 8, 307 (2000).ADSGoogle Scholar
  70. 70.
    M.M. Jeanne, submitted to Nucl. Instrum. Methods (2007) arXiv e-print: physics/0701224.Google Scholar
  71. 71.
    C. Yazidjian, Hyperfine Interact. 173, 181 (2007).ADSGoogle Scholar
  72. 72.
    D. Beck, Nucl. Instrum. Methods A 527, 567 (2004).ADSGoogle Scholar
  73. 73.
    M. Mukherjee, Phys. Rev. Lett. 93, 150801 (2004).ADSGoogle Scholar
  74. 74.
    K. Blaum, Phys. Rev. Lett. 91, 260801 (2003).ADSGoogle Scholar
  75. 75.
    A. Kellerbauer, Phys. Rev. Lett. 93, 072502 (2004).ADSGoogle Scholar
  76. 76.
    C. Guénaut, PhD Thesis, Univeristé Paris XI, Orsay, http://tel.archives-ouvertes.fr/tel-00011595 (2005).Google Scholar
  77. 77.
    C. Guénaut, submitted to Int. J. Mass Spectrom. (2006).Google Scholar
  78. 78.
    M. Mukherjee, Mass measurements and evaluation around ${A=22}$, this issue.Google Scholar
  79. 79.
    G. Bollen, Nucl. Phys. A 693, 3 (2001).ADSGoogle Scholar
  80. 80.
    K. Blaum, Europhys. Lett. 67, 586 (2004).ADSGoogle Scholar
  81. 81.
    J. Van Roosbroeck, Phys. Rev. Lett. 92, 11250 (2004).Google Scholar
  82. 82.
    C. Weber, Phys. Lett. A 347, 81 (2005).ADSGoogle Scholar
  83. 83.
    A. Herlert, New J. Phys. 7, 44 (2005).ADSGoogle Scholar
  84. 84.
    D. Beck, Nucl. Instrum. Methods B 126, 374 (1997).Google Scholar
  85. 85.
    I.I. Rabi, Phys. Rev. 53, 318 (1938).ADSGoogle Scholar
  86. 86.
    I.I. Rabi, Phys. Rev. 55, 526 (1939).ADSGoogle Scholar
  87. 87.
    N.F. Ramsey, Rev. Mod. Phys. 62, 541 (1990).ADSGoogle Scholar
  88. 88.
    M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007).ADSGoogle Scholar
  89. 89.
    S. George, Int. J. Mass Spectrom. 264, 110 (2007).ADSGoogle Scholar
  90. 90.
    S. George, Phys. Rev. Lett. 98, 162501 (2007).ADSGoogle Scholar
  91. 91.
    R. Ringle, Int. J. Mass Spectrom. 262, 33 (2007).ADSGoogle Scholar
  92. 92.
    S. Eliseev, Int. J. Mass Spectrom. 262, 45 (2007).ADSGoogle Scholar
  93. 93.
    K. Blaum, Nucl. Phys. A 746, 305c (2004).ADSGoogle Scholar
  94. 94.
    F. Herfurth, Phys. Rev. Lett. 87, 142501 (2001).ADSGoogle Scholar
  95. 95.
    F. Herfurth, Eur. Phys. J. A 15, 17 (2002).ADSGoogle Scholar
  96. 96.
    C. Guénaut, J. Phys. G 31, S1765 (2005).Google Scholar
  97. 97.
    C. Guénaut, Eur. Phys. J. A 25, S1.35 (2005). Google Scholar
  98. 98.
    C. Guénaut, Phys. Rev. C 75, 044303 (2007).ADSGoogle Scholar
  99. 99.
    D. Rodr\'iguez, Phys. Rev. Lett. 93, 161104 (2004).ADSGoogle Scholar
  100. 100.
    P. Delahaye, Phys. Rev. C 74, 034331 (2006).ADSGoogle Scholar
  101. 101.
    D. Rodr\'iguez, Nucl. Phys. A 769, 1 (2006).ADSGoogle Scholar
  102. 102.
    H. Raimbault-Hartmann, Nucl. Phys. A 706, 3 (2002).ADSGoogle Scholar
  103. 103.
    T. Otto, Nucl. Phys. A 567, 281 (1994).ADSMathSciNetGoogle Scholar
  104. 104.
    F. Herfurth, Nucl. Phys. A 746, 487c (2004).ADSGoogle Scholar
  105. 105.
    G. Sikler, Nucl. Phys. A 763, 45 (2005).ADSGoogle Scholar
  106. 106.
    J. Dilling, Eur. Phys. J. A 22, 163 (2004).ADSGoogle Scholar
  107. 107.
    A. Herlert, Int. J. Mass Spectrom. 251, 131 (2006).ADSGoogle Scholar
  108. 108.
    H. Stolzenberg, Phys. Rep. Lett. 65, 3104 (1990).ADSGoogle Scholar
  109. 109.
    F. Ames, Nucl. Phys. A 651, 3 (1999).ADSGoogle Scholar
  110. 110.
    D. Beck, Nucl. Phys. A 626, 343c (1997).ADSGoogle Scholar
  111. 111.
    G. Bollen, Hyperfine Interact. 132, 215 (2001).ADSGoogle Scholar
  112. 112.
    D. Beck, Eur. Phys. J. A 8, 307 (2002).ADSGoogle Scholar
  113. 113.
    S. Schwarz, Nucl. Phys. A 693, 533 (2001).ADSGoogle Scholar
  114. 114.
    G. Bollen, J. Mod. Opt. 39, 257 (1992).ADSGoogle Scholar
  115. 115.
    F. Herfurth, Eur. Phys. J. A 25, s01, 17 (2005).Google Scholar
  116. 116.
    C. Yazidjian, Phys. Rev. C 76, 024308 (2007).ADSGoogle Scholar

Copyright information

© The Author(s) 2008

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • M. Mukherjee
    • 1
  • D. Beck
    • 1
  • K. Blaum
    • 1
    • 2
    • 3
  • G. Bollen
    • 4
  • J. Dilling
    • 5
  • S. George
    • 1
    • 2
  • F. Herfurth
    • 1
  • A. Herlert
    • 6
    • 7
  • A. Kellerbauer
    • 3
  • H. -J. Kluge
    • 1
    • 8
  • S. Schwarz
    • 4
  • L. Schweikhard
    • 7
  • C. Yazidjian
    • 1
  1. 1.GSIDarmstadtGermany
  2. 2.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany
  3. 3.Max-Planck-Institute for Nuclear PhysicsHeidelbergGermany
  4. 4.NSCLMichigan State UniversityEast LansingUSA
  5. 5.TRIUMFVancouverCanada
  6. 6.Department of PhysicsCERNGenève 23Switzerland
  7. 7.Institut für PhysikErnst-Moritz-Arndt-UniversitätGreifswaldGermany
  8. 8.Physikalisches InstitutRuprecht-Karls-UniversitätHeidelbergGermany

Personalised recommendations