Advertisement

The European Physical Journal A

, Volume 35, Issue 1, pp 31–37 | Cite as

Mass measurements and evaluation around A = 22

  • M. Mukherjee
  • D. Beck
  • K. Blaum
  • G. Bollen
  • P. Delahaye
  • J. Dilling
  • S. George
  • C. Guénaut
  • F. Herfurth
  • A. Herlert
  • A. Kellerbauer
  • H. -J. Kluge
  • U. Köster
  • D. Lunney
  • S. Schwarz
  • L. Schweikhard
  • C. Yazidjian
Regular Article - Experimental Physics

Abstract.

Frequency ratio measurements with different combinations of the singly charged ions from 21, 22, 23Na , 22, 24Mg , and 37, 39K were performed at the on-line Penning trap mass spectrometer ISOLTRAP, CERN, Geneva. The masses and mass differences were deduced with a relative uncertainty of about or even below one part in 108 for the ions of interest using a least-squares analysis of all measured relations. The results have direct consequences for weak-interaction study as they give additional input to the test of CVC, and for nuclear astrophysics, because they help to establish the minimum observable signal for a NeNa cycle in a nova burst. We report here about the measurements and the detailed evaluation.

PACS.

21.10.Dr Binding energies and masses 26.30.-k Nucleosynthesis in novae, supernovae and other explosive environments 27.30.+t 20≤A≤38  32.10.Bi Atomic masses, mass spectra, abundances, and isotopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Hardy, I.S. Towner, Phys. Rev. C 71, 055501 (2005).CrossRefADSGoogle Scholar
  2. 2.
    I.S. Towner, J.C. Hardy, Phys. Rev. C 66, 035501 (2002).CrossRefADSGoogle Scholar
  3. 3.
    W.E. Ormand, Phys. Rev. C 52, 2455 (1995).CrossRefADSGoogle Scholar
  4. 4.
    M. Mukherjee, Phys. Rev. Lett. 93, 150801 (2004).CrossRefADSGoogle Scholar
  5. 5.
    A. Kellerbauer, Phys. Rev. Lett. 93, 072502 (2004). CrossRefADSGoogle Scholar
  6. 6.
    M.A. Preston, Physics of nucleus (Addison-Wesley Publication Company, Inc., 1962).Google Scholar
  7. 7.
    D.D. Clayton, F. Hoyle, Astrophys. J. 187, L101 (1974).Google Scholar
  8. 8.
    P. Jean, Proceedings of the 4th INTEGRAL Workshop, Alicante, 2000, edited by A. Gimenez, V. Reglero, C. Winkler, Vol. 459 (ESA Special Publication, 2001) p. 73.Google Scholar
  9. 9.
    M. Wiescher, Astron. Astrophys. 160, 56 (1986).ADSGoogle Scholar
  10. 10.
    P.M. Endt, Nucl. Phys. A 521, 1 (1990).CrossRefADSGoogle Scholar
  11. 11.
    W.A. Fowler, G.R. Caughlan, B.A. Zimmerman, Annu. Rev. Astron. Astrophys. 5, 525 (1967).CrossRefADSGoogle Scholar
  12. 12.
    J. José, A. Coc, M. Hernanz, Astrophys. J. 520, 347 (1999).CrossRefADSGoogle Scholar
  13. 13.
    N.A. Smirnova, A. Coc, Phys. Rev. C 62, 0458031 (2000).CrossRefGoogle Scholar
  14. 14.
    M. Wiescher, K. Langanke, Z. Phys. A 325, 309 (1986).Google Scholar
  15. 15.
    S. Bishop, Phys. Rev. Lett. 90, 162501 (2003).CrossRefADSGoogle Scholar
  16. 16.
    G. Audi, Nucl. Phys. A 729, 337 (2003).CrossRefADSGoogle Scholar
  17. 17.
    K. Blaum, Phys. Rep. 425, 1 (2006).CrossRefADSGoogle Scholar
  18. 18.
    U. Köster, Nucl. Instrum. Methods B 204, 347 (2003).CrossRefADSGoogle Scholar
  19. 19.
    F. Herfurth, Nucl. Instrum. Methods A 469, 254 (2001).CrossRefADSGoogle Scholar
  20. 20.
    G. Savard, Phys. Lett. A 158, 247 (1991).CrossRefADSGoogle Scholar
  21. 21.
    M. Mukherjee, ISOLTRAP: An on-line Penning trap for mass spectrometry on short-lived nuclides, this issue.Google Scholar
  22. 22.
    E. Kugler, Hyper Interact. 129, 23 (2000).CrossRefADSGoogle Scholar
  23. 23.
    M. König, Int. J. Mass Spectrom. Ion Process. 142, 95 (1995).CrossRefGoogle Scholar
  24. 24.
    A. Kellerbauer, Eur. Phys. J. D 22, 53 (2003).CrossRefADSGoogle Scholar
  25. 25.
    F. DiFilippo, Phys. Scr. T 59, 144 (1995).CrossRefADSGoogle Scholar
  26. 26.
    G. Audi, Nucl. Instrum. Methods A 249, 443 (1986).CrossRefADSGoogle Scholar
  27. 27.
    S. Brandt, Statistical and computational methods in data analysis (North Holland, Amsterdam, 1970).Google Scholar
  28. 28.
    R.T. Birge, Phys. Rev. 40, 207 (1932).zbMATHCrossRefADSGoogle Scholar
  29. 29.
    A. Anttila, Z. Phys. A 234, 455 (1970).Google Scholar
  30. 30.
    E. Beck, H. Daniel, Z. Phys. A 216, 229 (1968).Google Scholar
  31. 31.
    H.J. Gils, Nucl. Instrum. Methods 105, 179 (1972).CrossRefADSGoogle Scholar
  32. 32.
    J.C. Hardy, Phys. Rev. C 9, 252 (1974).CrossRefADSGoogle Scholar
  33. 33.
    J.A. Nolen, Nucl. Instrum. Methods 115, 189 (1974).CrossRefGoogle Scholar
  34. 34.
    J.C. Hardy, Phys. Rev. Lett. 91, 082501 (2003).CrossRefADSGoogle Scholar
  35. 35.
    D. Seweryniak, Phys. Rev. Lett. 94, 032501 (2005).CrossRefADSGoogle Scholar
  36. 36.
    G. Savard, Phys. Rev. C 70, 042501 (2004).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2008

Authors and Affiliations

  • M. Mukherjee
    • 1
  • D. Beck
    • 1
  • K. Blaum
    • 1
    • 2
  • G. Bollen
    • 3
  • P. Delahaye
    • 4
  • J. Dilling
    • 5
  • S. George
    • 1
    • 2
  • C. Guénaut
    • 6
  • F. Herfurth
    • 1
  • A. Herlert
    • 4
    • 7
  • A. Kellerbauer
    • 4
  • H. -J. Kluge
    • 1
    • 8
  • U. Köster
    • 4
  • D. Lunney
    • 6
  • S. Schwarz
    • 3
  • L. Schweikhard
    • 7
  • C. Yazidjian
    • 1
  1. 1.GSIDarmstadtGermany
  2. 2.Insitute of PhysicsJohannes Gutenberg-UniversityMainzGermany
  3. 3.NSCLMichigan State UniversityUSA
  4. 4.Physics DepartmentCERNGenèveSwitzerland
  5. 5.TRIUMFBritish ColumbiaCanada
  6. 6.CSNSM-IN2P3-CNRSOrsay-CampusFrance
  7. 7.Institute of PhysicsErnst-Moritz-Arndt-UniversityGreifswaldGermany
  8. 8.Institute of PhysicsRuprecht-Karls-UniversityHeidelbergGermany

Personalised recommendations