The European Physical Journal A

, Volume 34, Issue 2, pp 119–127

First production of ultracold neutrons with a solid deuterium source at the pulsed reactor TRIGA Mainz

  • A. Frei
  • Yu. Sobolev
  • I. Altarev
  • K. Eberhardt
  • A. Gschrey
  • E. Gutsmiedl
  • R. Hackl
  • G. Hampel
  • F. J. Hartmann
  • W. Heil
  • J. V. Kratz
  • Th. Lauer
  • A. Liźon Aguilar
  • A. R. Müller
  • S. Paul
  • Yu. Pokotilovski
  • W. Schmid
  • L. Tassini
  • D. Tortorella
  • N. Trautmann
  • U. Trinks
  • N. Wiehl
Regular Article - Experimental Physics

Abstract.

The production rates of ultracold neutrons (UCN) with a solid deuterium converter have been measured at the pulsed reactor TRIGA Mainz. Exposed to a thermal neutron fluence of \(\ensuremath \sim 1\cdot 10^{13}\) n·cm^-2·pulse^-1, the number of detected very cold and ultracold neutrons ranges up to 200 000 at 7mol of solid deuterium (sD2) in combination with a pre-moderator (mesitylene). About 50% of the measured neutrons can be assigned to UCN with energies E of \(\ensuremath V_{\rm F}({\rm sD}_2)\leq E \leq V_{\rm F}{\rm (guide)}\) where VF(sD2) = 105 neV and VF(guide) = 190 neV are the Fermi potentials of the sD2 converter and our stainless steel neutron guides, respectively. Thermal cycling of solid deuterium, which was frozen out from the gas phase, considerably improved the UCN yield, in particular at higher amounts of sD2.

PACS.

28.20.Gd Neutron transport: diffusion and moderation 14.20.Dh Protons and neutrons 29.25.Dz Neutron sources 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.K. Ignatovich, The Physics of Ultracold Neutrons (Oxford Science Publications, Clarendon Press, Oxford, 1990).Google Scholar
  2. 2.
    R. Golub, D.J. Richardson, S.K. Lamoreaux, Ultra-Cold Neutrons (Adam Hilger, Bristol, 1991).Google Scholar
  3. 3.
    S. Arzumanov, L. Bondarenko, S. Chernyavsky, W. Drexel, A. Fomin, P. Geltenbort, V. Morozov, Y. Panin, J. Pendlebury, K. Schreckenbach, Phys. Lett. B 483, 15 (2000).CrossRefADSGoogle Scholar
  4. 4.
    A. Serebrov, V. Varlamov, A. Kharitonov, A. Fomin, Y. Pokotilovski, P. Geltenbort, J. Butterworth, I. Krasnoshekova, M. Lasakov, R. Tal'daev, A. Vassiljev, O. Zherebtsov, Phys. Lett. B 605, 72 (2005).CrossRefADSGoogle Scholar
  5. 5.
    C.A. Baker, D.D. Doyle, P. Geltenbort, K. Green, M.G.D. Van der Grinten, P.G. Harris, P. Iaydjiev, S.N. Ivanov, D.J.R. May, J.M. Pendlebury, J.D. Richardson, D. Shiers, K.F. Smith, Phys. Rev. Lett. 97, 131801 (2006).CrossRefADSGoogle Scholar
  6. 6.
    V.V. Nesvizhevsky, H.G. Börner, A.K. Petukhov, H. Abele, S. Baessler, F.J. Ruess, T. Stopferle, A. Westphal, A.M. Gagarski, G.A. Petrov, A.V. Strelkov, Nature 415, 6869 (2002).CrossRefGoogle Scholar
  7. 7.
    A. Steyerl, H. Nagel, F.-X. Schreiber, K.-A. Steinhauser, R. Gähler, W. Gläser, P. Ageron, J.M. Astruc, W. Drexel, G. Gervais, W. Mampe, Phys. Lett. A 116, 347 (1986).CrossRefADSGoogle Scholar
  8. 8.
    R. Golub, J.M. Pendlebury, Phys. Lett. A 53, 133 (1975).CrossRefADSGoogle Scholar
  9. 9.
    R. Golub, C. Jewell, P. Ageron, W. Mampe, B. Heckel, I. Kilvington, Z. Phys. B 51, 187 (1983).CrossRefGoogle Scholar
  10. 10.
    R. Golub, K. Böning, Z. Phys. B 51, 95 (1983).CrossRefGoogle Scholar
  11. 11.
    Z.-Ch. Yu, S.S. Malik, R. Golub, Z. Phys. B 62, 137 (1986).CrossRefGoogle Scholar
  12. 12.
    C.-Y. Liu, A.R. Young, S.K. Lamoreaux, Phys. Rev. B 62, R3581 (2000).Google Scholar
  13. 13.
    L. Kaplan, G.R. Ringo, K.E. Wilzbach, Phys. Rev. 87, 785 (1952).CrossRefADSGoogle Scholar
  14. 14.
    C.L. Morris, J.M. Anaya, T.J. Bowles, B.W. Filippone, P. Geltenbort, R.E. Hill, M. Hino, S. Hoedl, G.E. Hogan, T.M. Ito, T. Kawai, K. Kirch, S.K. Lamoreaux, C.-Y. Liu, M. Makela, L.J. Marek, J.W. Martin, R.N. Mortensen, A. Pichlmaier, A. Saunders, S.J. Seestrom, D. Smith, W. Teasdale, B. Tipton, M. Utsuro, A.R. Young, J. Yuan, Phys. Rev. Lett. 89, 272501 (2002).CrossRefADSGoogle Scholar
  15. 15.
    K. Bodek, B. van den Brandt, T. Bryś, M. Daum, P. Fierlinger, P. Geltenbort, M. Giersch, P. Hautle, R. Henneck, M. Kasprzak, K. Kirch, J.A. Konter, G. Kühne, M. Kuźniak, K. Mishima, A. Pichlmaier, D. Rätz, A. Serebrov, J. Zmeskal, Nucl. Instrum. Methods Phys. Res. A 533, 491 (2004).CrossRefADSGoogle Scholar
  16. 16.
    F. Atchison, B. van den Brandt, T. Bryś, M. Daum, P. Fierlinger, P. Hautle, R. Henneck, S. Heule, M. Kasprzak, K. Kirch, J.A. Konter, A. Michels, A. Pichlmaier, M. Wohlmuther, A. Wokaun, K. Bodek, U. Szerer, P. Geltenbort, J. Zmeskal, Y. Pokotilovski, Phys. Rev. C 71, 054601 (2005).CrossRefADSGoogle Scholar
  17. 17.
    U. Trinks, F.J. Hartmann, S. Paul, W. Schott, Nucl. Instrum. Methods Phys. Res. A 440, 666 (2000).CrossRefADSGoogle Scholar
  18. 18.
    http://ucn.web.psi.ch/.Google Scholar
  19. 19.
    C.A. Baker, S.N. Balashov, J. Butterworth, P. Geltenbort, K. Green, P.G. Harris, M.G.D. van der Grinten, P.S. Iaydjiev, S.N. Ivanov, J.M. Pendlebury, D.B. Shiers, M.A.H. Tucker, H. Yoshiki, Phys. Lett. A 308, 67 (2003). CrossRefADSGoogle Scholar
  20. 20.
    Y. Masuda, T. Kitagaki, K. Hatanaka, M. Higuchi, S. Ishimoto, Y. Kiyanagi, K. Morimoto, S. Muto, M. Yoshimura, Phys. Rev. Lett. 89, 284801 (2002).CrossRefADSGoogle Scholar
  21. 21.
    H. Yoshiki, K. Sakai, M. Ogura, T. Kawai, Y. Masuda, T. Nakajima, T. Takayama, S. Tanaka, A. Yamaguchi, Phys. Rev. Lett. 68, 1323 (1992).CrossRefADSGoogle Scholar
  22. 22.
    A. Saunders, J.M. Anaya, T.J. Bowles, B.W. Filippone, P. Geltenbort, R.E. Hill, M. Hino, S. Hoedl, G.E. Hogan, T.M. Ito, T. Kawai, K. Kirch, S.K. Lamoreaux, C.-Y. Liu, M. Makela, L.J. Marek, J.W. Martin, C.L. Morris, R.N. Mortensen, A. Pichlmaier, S.J. Seestrom, A. Serebrov, D. Smith, W. Teasdale, B. Tipton, A.R. Young, J. Yuan, Phys. Lett. B 593, 55 (2004).CrossRefADSGoogle Scholar
  23. 23.
    Yu.N. Pokotilovski, Nucl. Instrum. Methods Phys. Res. A 356, 412 (1995).CrossRefADSGoogle Scholar
  24. 24.
    S.L. Koutz, T. Taylor, A. McReynolds, F. Dyson, R.S. Stolne, H.P. Sleeper jr., R.B. Duffield, Proceedings of the 2nd UN International Conference Peaceful Uses of Atomic Energy, Geneva, 1958, Vol. 10 (IAEA, 1958) p. 282.Google Scholar
  25. 25.
    A.W. McReynolds, M.S. Nelkin, M.N. Rosenbluth, W.L. Whittermore, PICG, Vol. 16, 297 (1958), see also Proceedings of the 2nd UN International Conference Peaceful Uses of Atomic Energy, Geneva, 1958, Vol. 10 (IAEA, 1958) p. 1540.Google Scholar
  26. 26.
    R.S. Stone, H.P. Sleeper, R.H. Stahl, G. West, Nucl. Sci. Eng. 6, 255 (1959).Google Scholar
  27. 27.
    H. Menke, N. Trautmann, W.J. Krebs, Kerntechnik 17, 281 (1975).Google Scholar
  28. 28.
    http://www.n-cdt.com/.Google Scholar
  29. 29.
    M. Klein, H. Abele, D. Fiolka, Ch. Schmidt, in Art and Symmetry in Experimental Physics, edited by D. Budker, AIP Conf. Proc., Vol. 596 (2001).Google Scholar
  30. 30.
    OXISORB is obtained from the MESSER company (Messer-Griesheim, Germany) http://www.messergroup. com/.Google Scholar
  31. 31.
    I.F. Silvera, Rev. Mod. Phys. 52, no. 2, part I (1980).Google Scholar
  32. 32.
    I. Altarev, A. Frei, P. Geltenbort, E. Gutsmiedl, F.J. Hartmann, A.R. Müller, S. Paul, C. Plonka, D. Tortorella, Nucl. Instrum. Methods Phys. Res. A 570, 101 (2007).CrossRefADSGoogle Scholar
  33. 33.
    F. Atchison, B. Blau, M. Daum, P. Fierlinger, P. Geltenbort, M. Gupta, R. Henneck, S. Heule, M. Kasprzak, A. Knecht, M. Kuzniak, K. Kirch, M. Meier, A. Pichlmaier, R. Reiser, B. Theiler, O. Zimmer, G. Zsigmond, Nucl. Instrum. Methods Phys. Res. B 260, 647 (2007).CrossRefADSGoogle Scholar
  34. 34.
    V.F. Sears, Neutron News 3, 29 (1980).Google Scholar
  35. 35.
    Y. Pokotilovski, K. Eberhardt, W. Heil, J.V. Kratz, U. Tharun, N. Trautmann, Y. Sobolev, N. Wiehl, Annual Report, Institute of Nuclear Chemistry Mainz, A24 (2004).Google Scholar
  36. 36.
    M. Prager, H. Grimm, I. Natkaniec, Phys. Chem. 7, 2587 (2005).CrossRefGoogle Scholar
  37. 37.
    M.J. Harris, R.E. Kay, Proc. Phys. Soc. 85, 79 (1965).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  • A. Frei
    • 1
  • Yu. Sobolev
    • 2
  • I. Altarev
    • 1
  • K. Eberhardt
    • 3
  • A. Gschrey
    • 1
  • E. Gutsmiedl
    • 1
  • R. Hackl
    • 4
  • G. Hampel
    • 3
  • F. J. Hartmann
    • 1
  • W. Heil
    • 2
  • J. V. Kratz
    • 3
  • Th. Lauer
    • 3
  • A. Liźon Aguilar
    • 3
    • 6
  • A. R. Müller
    • 1
  • S. Paul
    • 1
  • Yu. Pokotilovski
    • 5
  • W. Schmid
    • 1
  • L. Tassini
    • 4
  • D. Tortorella
    • 1
  • N. Trautmann
    • 3
  • U. Trinks
    • 1
  • N. Wiehl
    • 3
  1. 1.Physics DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Institute for PhysicsJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Institute for Nuclear ChemistryJohannes Gutenberg-Universität MainzMainzGermany
  4. 4.Walther-Meissner-Institut der Bayerischen Akademie der WissenschaftenGarchingGermany
  5. 5.Joint Institute for Nuclear ResearchDubna, Moscow RegionRussia
  6. 6.STEAG Encotec GmbHEssenGermany

Personalised recommendations