Advertisement

Nucleon form factors and dispersion relations

  • S. PacettiEmail author
PAVI 2006

Abstract.

We define a dispersive technique, based on data, analyticity and dispersion relations to handle the nucleon form factors. Two applications are explicitly considered. In the first case, we use the available theoretical and experimental information on the ratio between the electric and magnetic proton form factors, as inputs in the dispersive procedure that gives a complex description of this ratio in the whole q2 complex plane. In the second case, by inverting a dispersion relation and considering the data and the pQCD asymptotic behaviour as inputs, the magnetic nucleon form factors are reconstructed in their unphysical region. Resonances and phases in agreement with the expectations are found.

PACS.

13.40.Gp Electromagnetic form factors 11.55.Bq Analytic properties of S matrix 11.55.Fv Dispersion relations 13.66.Bc Hadron production in e-e+ interactions 

References

  1. 1.
    M. Gourdin, Phys. Rep. 11, 29 (1974) and references therein.CrossRefADSGoogle Scholar
  2. 2.
    B.V. Geshkenbein, Yad. Fiz. 9, 1232 (1969).Google Scholar
  3. 3.
    V.A. Matveev, R.M. Muradyan, A.N. Tavkhelidze, Lett. Nuovo Cimento 7, 719 (1973)Google Scholar
  4. 4.
    M.K. Jones, Phys. Rev. Lett. 84, 1398 (2000)CrossRefADSGoogle Scholar
  5. 5.
    B.D. Milbrath, Phys. Rev. Lett. 80, 452 (1998)CrossRefADSGoogle Scholar
  6. 6.
    B. Aubert, Phys. Rev. D 73, 012005 (2006).CrossRefADSGoogle Scholar
  7. 7.
    G. Bardin, Nucl. Phys. B 411, 3 (1994).CrossRefADSGoogle Scholar
  8. 8.
    A. Antonelli, Nucl. Phys. B 517, 3 (1998).CrossRefADSGoogle Scholar
  9. 9.
    D. Bisello, Nucl. Phys. B 224, 379 (1983).CrossRefADSGoogle Scholar
  10. 10.
    G. Stancari, PhD ThesisGoogle Scholar
  11. 11.
    R.C. Walker, Phys. Rev. D 49, 5671 (1994)CrossRefADSGoogle Scholar
  12. 12.
    M.N. Rosenbluth, Phys. Rev. 79, 615 (1950).zbMATHCrossRefADSGoogle Scholar
  13. 13.
    S. Dubnicka, A.Z. Dubnickova, Fizika B 13, 287 (2004).Google Scholar
  14. 14.
    J.P. Ralston, P. Jain, Phys. Rev. D 69, 053008 (2004)CrossRefADSGoogle Scholar
  15. 15.
    A.V. Belitsky, X. Ji, F. Yuan, Phys. Rev. Lett. 91, 092003 (2003).CrossRefADSGoogle Scholar
  16. 16.
    S.J. Brodsky, Phys. Rev. D 69, 054022 (2004).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    F. Iachello, A.D. Jackson, A. Lande, Phys. Lett. B 43, 191 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    P.A. Guichon, M. Vanderhaeghen, Phys. Rev. Lett. 91, 142303 (2003)CrossRefADSGoogle Scholar
  19. 19.
    R. Baldini, Eur. Phys. J. C 11, 709 (1999).CrossRefADSGoogle Scholar
  20. 20.
    E.C. Tichmarsch, The Theory of Functions (Oxford University Press, London, 1939).Google Scholar
  21. 21.
    A.Z. Dubnickova, S. Dubnicka, P.M. Rekalo, Nuovo Cimento A 109, 241 (1966).ADSGoogle Scholar
  22. 22.
    C.F. Perdrisat, Jefferson Lab. experiment E01-109.Google Scholar
  23. 23.
    See, for example, B. Orman, Phys. Rev. 145, 1140 (1966) and other references therein.CrossRefGoogle Scholar
  24. 24.
    P. Mergell, U.-G. Meissner, D. Drechsel, Nucl. Phys. A 596, 367 (1996)CrossRefADSGoogle Scholar
  25. 25.
    http://www.lnf.infn.it/esperimenti/finuda/finuda. html.Google Scholar
  26. 26.
    http://www.lnf.infn.it/esperimenti/siddharta/.Google Scholar
  27. 27.
    F. Ambrosino, hep-ex/0603056.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratori Nazionali di Frascati dell'INFNFrascatiItaly

Personalised recommendations