Advertisement

The European Physical Journal A

, Volume 31, Issue 4, pp 761–765 | Cite as

Nonequilibrium quasi-classical effective meson gas: Thermalization

  • R. F. Alvarez-EstradaEmail author
QNP 2006

Abstract.

We consider a gas of interacting relativistic effective mesons (qualitatively, like those produced in a heavy-ion collision), regarded as an out-of-equilibrium statistical system. We suppose large occupation numbers, temperature somewhat below typical critical temperatures and the quasi-classical regime. At some initial time t0, let the gas be in a nonequilibrium state, with spatial inhomogeneities. The time evolution of the gas for t > t 0 is studied by a moment method, and appropriate long-time approximations, which could yield the approach to global thermal equilibrium, are discussed.

PACS.

11.10.Wx Finite-temperature field theory 11.25.Db Properties of perturbation theory 11.10.Gh Renormalization 11.90.+t Other topics in general theory of fields and particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Boyanovsky, Phase transitions in the early and the present universe: from the Big Bang to heavy ion collisions, arXiv:hep-ph/0102120 v2 21 Feb. (2001).Google Scholar
  2. 2.
    U. Heinz, Concepts in heavy-ion physics, arXiv:hep-ph/0407360 v1 30 July (2004).Google Scholar
  3. 3.
    K.-C. Chou, Z.-B. Su, B.-L. Hao, L. Yu, Phys. Rep. 118, 1 (1985).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    J. Berges, Introduction to nonequilibrium quantum field theory, arXiv:hep-ph/0409233 v1 20 Sep. (2004).Google Scholar
  5. 5.
    E. Wigner, Phys. Rev. 40, 749 (1932).zbMATHCrossRefADSGoogle Scholar
  6. 6.
    R. Kubo, M. Toda, N. Hashitsume, Statistical Mechanics II, second edition (Springer, Berlin, 1998).Google Scholar
  7. 7.
    R.F. Alvarez-Estrada, Ann. Phys. (Leipzig) 11, 357 (2002).zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, fourth edition (Clarendon Press, Oxford, 2002).Google Scholar
  9. 9.
    A. Munoz Sudupe, R.F. Alvarez-Estrada, J. Phys. A: Math. Gen. 16, 3049 (1983).CrossRefADSGoogle Scholar
  10. 10.
    R. Bausch, H.K. Janssen, Y. Yamazaki, Z. Phys. B 37, 163 (1980).CrossRefGoogle Scholar
  11. 11.
    G. Aarts, G.F. Bonini, C. Wetterich, Nucl. Phys. B 587, 403 (2000).CrossRefADSGoogle Scholar
  12. 12.
    G.F. Bonini, C. Wetterich, Phys. Rev. D 60, 105026 (1999).CrossRefADSGoogle Scholar
  13. 13.
    F. Cooper, A. Khare, H. Rose, Phys. Lett. B 515, 463 (2001).zbMATHCrossRefADSGoogle Scholar
  14. 14.
    G. Aarts, J. Smit, Nucl. Phys. B 511, 451 (1998).CrossRefADSGoogle Scholar
  15. 15.
    W. Buchmuller, A. Jakovac, Phys. Lett. B 407, 39 (1997).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Departamento de Fısica Teórica I, Facultad de Ciencias FısicasUniversidad ComplutenseMadridSpain

Personalised recommendations