Advertisement

The European Physical Journal A

, Volume 31, Issue 4, pp 656–661 | Cite as

QCD Coulomb gauge approach to exotic hadrons

  • S. R. CotanchEmail author
  • I. J. General
  • P. Wang
QNP 2006

Abstract.

The Coulomb gauge Hamiltonian model is used to calculate masses for selected JPC states consisting of exotic combinations of quarks and gluons: ggg glueballs (oddballs), q¯g hybrid mesons and q¯q¯ tetraquark systems. An odderon Regge trajectory is computed for the J- glueballs with intercept much smaller than the pomeron, explaining its nonobservation. The lowest 1-+ hybrid-meson mass is found to be just above 2.2GeV while the lightest tetraquark state mass with these exotic quantum numbers is predicted around 1.4GeV consistent with the observed π(1400).

PACS.

12.38.Lg Other nonperturbative calculations 12.39.Ki Relativistic quark model 12.39.Mk Glueball and nonstandard multi-quark/gluon states 12.40.Yx Hadron mass models and calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.P. Szczepaniak, E.S. Swanson, C.R. Ji, S.R. Cotanch, Phys. Rev. Lett. 76, 2011 (1996).CrossRefADSGoogle Scholar
  2. 2.
    F.J. Llanes-Estrada, S.R. Cotanch, Phys. Rev. Lett. 84, 1102 (2000).CrossRefADSGoogle Scholar
  3. 3.
    F.J. Llanes-Estrada, S.R. Cotanch, Phys. Lett. B 504, 15 (2001).CrossRefADSGoogle Scholar
  4. 4.
    F.J. Llanes-Estrada, S.R. Cotanch, Nucl. Phys. A 697, 303 (2002).zbMATHCrossRefADSGoogle Scholar
  5. 5.
    F.J. Llanes-Estrada, S.R. Cotanch, P. Bicudo, J.E. Ribeiro, A.P. Szczepaniak, Nucl. Phys. A 710, 45 (2002).CrossRefADSGoogle Scholar
  6. 6.
    F.J. Llanes-Estrada, S.R. Cotanch, A.P. Szczepaniak, E.S. Swanson, Phys. Rev. C 70, 035202 (2004). CrossRefADSGoogle Scholar
  7. 7.
    F.J. Llanes-Estrada, P. Bicudo, S.R. Cotanch, Phys. Rev. Lett. 96, 081601 (2006).CrossRefADSGoogle Scholar
  8. 8.
    I.J. General, S.R. Cotanch, F.J. Llanes-Estrada, arXiv:hep-ph/0609115.Google Scholar
  9. 9.
    G.P. Lepage, J. Comput. Phys. 27, 192 (1978)zbMATHCrossRefGoogle Scholar
  10. 10.
    C.J. Morningstar, M. Peardon, Phys. Rev. D 60, 034509 (1999).CrossRefADSGoogle Scholar
  11. 11.
    H.B. Meyer, M. Teper, Phys. Lett. B 605, 344 (2005).CrossRefADSGoogle Scholar
  12. 12.
    A.B. Kaidalov, Y.A. Simonov, Phys. Lett. B 477, 163 (2000).CrossRefADSGoogle Scholar
  13. 13.
    C. Bernard, Phys. Rev. D 56, 7039 (1997).CrossRefADSGoogle Scholar
  14. 14.
    C. Bernard, Nucl. Phys. (Proc. Suppl.) B 73, 264 (1999).CrossRefADSGoogle Scholar
  15. 15.
    P. Lacock, K. Schilling, Nucl. Phys. (Proc. Suppl.) B 73, 261 (1999).CrossRefADSGoogle Scholar
  16. 16.
    J.N. Hedditch, Phys. Rev. D 72, 114507 (2005).CrossRefADSGoogle Scholar
  17. 17.
    X.Q. Luo, Z.H. Mei, Nucl. Phys. (Proc. Suppl.) B 119, 263 (2003).zbMATHCrossRefADSGoogle Scholar
  18. 18.
    Y. Liu, X. Q. Luo, Phys. Rev. D 73, 054510 (2006).CrossRefADSGoogle Scholar
  19. 19.
    L.A. Griffiths, C. Michael, P.E.L. Rakow, Phys. Lett. B 129, 351 (1983).CrossRefADSGoogle Scholar
  20. 20.
    S. Perantonis, C. Michael, Nucl. Phys. B 347, 854 (1990).CrossRefADSGoogle Scholar
  21. 21.
    T. Barnes, F.E. Close, E.S. Swanson, Phys. Rev. D 52, 5242 (1995).CrossRefADSGoogle Scholar
  22. 22.
    F.E. Close, P.R. Page, Nucl. Phys. B 443, 233 (1995).CrossRefADSGoogle Scholar
  23. 23.
    K. Waidelich, Diploma Thesis, North Carolina State University (2001).Google Scholar
  24. 24.
    E.R. Berger, Eur. Phys. J. C 9, 491 (1999).CrossRefADSGoogle Scholar
  25. 25.
    E.R. Berger, Eur. Phys. J. C 14, 673 (2000).ADSGoogle Scholar
  26. 26.
    A.P. Szczepaniak, P. Krupinski, Phys. Rev. D 73, 116002 (2006).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of PhysicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations