Advertisement

The European Physical Journal A

, Volume 31, Issue 3, pp 319–325 | Cite as

Beta decay of 101Sn

  • O. Kavatsyuk
  • C. Mazzocchi
  • Z. Janas
  • A. Banu
  • L. Batist
  • F. Becker
  • A. Blazhev
  • W. Brüchle
  • J. Döring
  • T. Faestermann
  • M. Górska
  • H. Grawe
  • A. Jungclaus
  • M. Karny
  • M. Kavatsyuk
  • O. Klepper
  • R. Kirchner
  • M. La Commara
  • K. Miernik
  • I. Mukha
  • C. Plettner
  • A. Płochocki
  • E. Roeckl
  • M. Romoli
  • K. Rykaczewski
  • M. Schädel
  • K. Schmidt
  • R. Schwengner
  • J. Żylicz
Regular Article - Nuclear Structure and Reactions

Abstract.

The β decay of the very neutron-deficient isotope 101Sn was studied at the GSI on-line mass separator using silicon detectors for recording charged particles and germanium detectors for γ-ray spectroscopy. Based on the β-delayed proton data the production cross-section of 101Sn in the 50Cr + 58Ni fusion-evaporation reaction was determined to be about 60nb. The half-life of 101Sn was measured to be 1.9(3)s. For the first time β-delayed γ-rays of 101Sn were tentatively identified, yielding weak evidence for a cascade of 352 and 1065keV transitions in 101In. The results for the 101Sn decay as well as those from previous work on the 103Sn decay are discussed by comparing them to predictions obtained from shell model calculations employing a new interaction in the 88Sr to 132Sn model space.

PACS.

27.60.+j 90≤A≤149 21.10.-k Properties of nuclei; nuclear energy levels 23.40.-s β decay; double β decay; electron and muon capture 21.10.Tg Lifetimes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Janas, Phys. Scr. T 56, 262 (1995).CrossRefADSGoogle Scholar
  2. 2.
    A. Stolz, PhD Thesis, TU München (2001).Google Scholar
  3. 3.
    D. Seweryniak, Phys. Rev. C 73, 061301(R) (2006).CrossRefADSGoogle Scholar
  4. 4.
    S.N. Liddick, Phys. Rev. Lett. 97, 082501 (2006).CrossRefADSGoogle Scholar
  5. 5.
    M. Karny, Eur. Phys. J. A 25, s01, 135 (2005) DOI: 10.1140/epjad/i2005-06-037-9.Google Scholar
  6. 6.
    M. Kavatsyuk, Eur. Phys. J. A 25, s01, 139 (2005) DOI: 10.1140/epjad/i2005-06-038-8.Google Scholar
  7. 7.
    O. Kavatsyuk, Eur. Phys. J. A 25, 211 (2005) DOI: 10.1140/epja/i2005-10108-1.CrossRefADSGoogle Scholar
  8. 8.
    M. Karny, Eur. Phys. J. A 27, 129 (2006) DOI: 10.1140/epja/i2005-10258-0.CrossRefADSGoogle Scholar
  9. 9.
    H. Grawe, M. Lewitowicz, Nucl. Phys. A 693, 116 (2001).CrossRefADSGoogle Scholar
  10. 10.
    B.A. Brown, K. Rykaczewski, Phys. Rev. C 50, R2270 (1994).Google Scholar
  11. 11.
    G. Audi, Nucl. Phys. A 729, 337 (2003).CrossRefADSGoogle Scholar
  12. 12.
    Z. Hu, Phys. Rev. C 60, 024315 (1999).CrossRefADSGoogle Scholar
  13. 13.
    M. Lipoglavšek, Phys. Rev. C 66, 011302 (2002).CrossRefADSGoogle Scholar
  14. 14.
    J. Kownacki, Nucl. Phys. A 627, 239 (1997).CrossRefADSGoogle Scholar
  15. 15.
    E. Roeckl, Nucl. Instrum. Methods Phys. Res. B 204, 53 (2003).CrossRefADSGoogle Scholar
  16. 16.
    R. Kirchner, Nucl. Instrum. Methods Phys. Res. B 204, 179 (2003).CrossRefADSGoogle Scholar
  17. 17.
    J. Gerl, Proceedings of the Conference on Physics from Large $\gamma$ ray Detector Arrays, Berkeley, USA, 1994 (LBL 35687, UC 413, 1994) p. 159.Google Scholar
  18. 18.
    R. Kirchner, private communication.Google Scholar
  19. 19.
    J. Blachot, Nucl. Data Sheets 83, 1 (1998).CrossRefGoogle Scholar
  20. 20.
    H. Grawe, Phys. Scr. T 56, 71 (1995).CrossRefADSGoogle Scholar
  21. 21.
    H. Grawe, in preparation.Google Scholar
  22. 22.
    R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996).Google Scholar
  23. 23.
    M. Hjorth-Jensen, T.T.S. Kuo, E. Osnes, Phys. Rep. 261, 125 (1995).CrossRefGoogle Scholar
  24. 24.
    M. Hjorth-Jensen, private communication.Google Scholar
  25. 25.
    B.A. Brown, A. Etchegoyen, W.D.M. Rae, Computer Code OXBASH, MSU-NSCL report No. 524 (1988).Google Scholar
  26. 26.
    B. Jonson, Proceedings of the 3rd International Conference on Nuclei far from Stability, Cargèse, 1976, CERN 76-13, p. 277.Google Scholar
  27. 27.
    P. Hornshøj, Nucl. Phys. A 187, 609 (1972).CrossRefADSGoogle Scholar
  28. 28.
    C.M. Perey, F.G. Perey, At. Data Nucl. Data Tables 17, 1 (1976).CrossRefADSGoogle Scholar
  29. 29.
    O. Kavatsyuk, GSI Sci. Rep. 2005, GSI Report 2006-1, p. 152.Google Scholar
  30. 30.
    I. Mukha, Nature 439, 298 (2006)CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  • O. Kavatsyuk
    • 1
    • 2
  • C. Mazzocchi
    • 1
    • 3
  • Z. Janas
    • 4
  • A. Banu
    • 1
  • L. Batist
    • 5
  • F. Becker
    • 1
  • A. Blazhev
    • 1
    • 6
  • W. Brüchle
    • 1
  • J. Döring
    • 1
  • T. Faestermann
    • 7
  • M. Górska
    • 1
  • H. Grawe
    • 1
  • A. Jungclaus
    • 8
  • M. Karny
    • 4
  • M. Kavatsyuk
    • 1
    • 2
  • O. Klepper
    • 1
  • R. Kirchner
    • 1
  • M. La Commara
    • 9
  • K. Miernik
    • 4
  • I. Mukha
    • 1
    • 10
  • C. Plettner
    • 1
  • A. Płochocki
    • 4
  • E. Roeckl
    • 1
  • M. Romoli
    • 9
  • K. Rykaczewski
    • 11
  • M. Schädel
    • 1
  • K. Schmidt
    • 12
  • R. Schwengner
    • 13
  • J. Żylicz
    • 4
  1. 1.Gesellschaft für Schwerionenforschung, DarmstadtDarmstadtGermany
  2. 2.National Taras Shevchenko University of KyivUkraine
  3. 3.University of TennesseeKnoxvilleUSA
  4. 4.University of WarsawPoland
  5. 5.St. Petersburg Nuclear Physics InstituteRussia
  6. 6.University of SofiaBulgaria
  7. 7.Technische Universität MünchenGermany
  8. 8.CSIC and Departamento de Fisica Teórica, UAMInstituto Estructura de la MateriaMadridSpain
  9. 9.Università “Federico II” and INFNNapoliItaly
  10. 10.Kurchatov InstituteMoscowRussia
  11. 11.Oak Ridge National LaboratoryOak RidgeUSA
  12. 12.Continental Teves AG & Co.Frankfurt am MainGermany
  13. 13.Forschungszentrum RossendorfInstitut für Kern- und HadronenphysikDresdenGermany

Personalised recommendations