Advertisement

The European Physical Journal A

, Volume 31, Issue 4, pp 790–792 | Cite as

Infrared gluon and ghost propagators from lattice QCD

Results from large asymmetric lattices
  • O. OliveiraEmail author
  • P. J. Silva
QNP 2006

Abstract.

We report on the infrared limit of the quenched lattice Landau gauge gluon and ghost propagators as well as the strong-coupling constant computed from large asymmetric lattices. The infrared lattice propagators are compared with the pure power law solutions from Dyson-Schwinger equations (DSE). For the gluon propagator, the lattice data is compatible with the DSE solution. The preferred measured gluon exponent being ∼0.52, favouring a vanishing propagator at zero momentum. The lattice ghost propagator shows finite-volume effects and, for the volumes considered, the propagator does not follow a pure power law. Furthermore, the strong-coupling constant is computed and its infrared behaviour investigated.

PACS.

12.38.-t Quantum chromodynamics 11.15.Ha Lattice gauge theory 12.38.Gc Lattice QCD calculations 14.70.Dj Gluons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review on strong-coupling constant see, for example, G.M. Prosperi, M. Raciti, C. Simolo, hep-ph/0607209.Google Scholar
  2. 2.
    L. von Smekal, A. Hauck, R. Alkofer, Phys. Rev. Lett. 79, 3591 (1997)CrossRefADSGoogle Scholar
  3. 3.
    C.S. Fischer, M.R. Pennington, Phys. Rev. D 73, 034029 (2006).CrossRefADSGoogle Scholar
  4. 4.
    For a review on DSE gluon and ghost propagators see, for example, C.S. Fischer, J. Phys. G 32, R253 (2006) [hep-ph/0605173].Google Scholar
  5. 5.
    A.C. Aguillar, A.A. Natale, P.S. Rodrigues da Silva, Phys. Rev. Lett. 90, 152001 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Ph. Boucaud, J.P. Leroy, A. Le Yaouanc, A.Y. Lokhov, J. Micheli, O. Pène, J. Rodríguez-Quintero, C. Roiesnel, hep-ph/0507104.Google Scholar
  7. 7.
    C.S. Fischer, J.M. Pawlowski, hep-th/0609009.Google Scholar
  8. 8.
    O. Oliveira, P.J. Silva, AIP Conf. Proc. 756, 290 (2005).CrossRefADSGoogle Scholar
  9. 9.
    P.J. Silva, O. Oliveira, PoS (LAT2005) 286 (2006).Google Scholar
  10. 10.
    O. Oliveira, P.J. Silva, PoS (LAT2005) 287 (2006).Google Scholar
  11. 11.
    P.J. Silva, O. Oliveira, Phys. Rev. D 74, 034513 (2006) [hep-lat/0511043].CrossRefADSGoogle Scholar
  12. 12.
    O. Oliveira, P.J. Silva, Comput. Phys. Commun. 158, 73 (2004) [hep-lat/0309184].CrossRefADSGoogle Scholar
  13. 13.
    The definitions concerning the ghost propagator can be found in the articles where the lattice ghost propagator has been computed so far.Google Scholar
  14. 14.
    H. Suman, K. Schilling, Phys. Lett. B 373, 314 (1996) [hep-lat/9512003].CrossRefADSGoogle Scholar
  15. 15.
    A. Cucchieri, Nucl. Phys. B 508, 353 (1997) [hep-lat/9705005].CrossRefADSGoogle Scholar
  16. 16.
    A. Cucchieri, T. Mendes, Phys. Rev. D 73, 071502 (2006) [hep-lat/0602012].CrossRefADSGoogle Scholar
  17. 17.
    S. Furui, H. Nakajima, PoS (LAT2005) 291 [hep-lat/0509035]Google Scholar
  18. 18.
    A. Sternbeck, E.-M. Ilgenfritz, M. Muller-Preussker, Phys. Rev. D 73, 014502 (2006) [hep-lat/0510109]CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Centro de Fısica ComputacionalUniversidade de CoimbraCoimbraPortugal

Personalised recommendations