Advertisement

The European Physical Journal A

, Volume 31, Issue 4, pp 848–850 | Cite as

Transport coefficients in Chiral Perturbation Theory

  • D. Fernández-Fraile
  • A. Gómez Nicola
QNP 2006

Abstract.

We present recent results on the calculation of transport coefficients for a pion gas at zero chemical potential in Chiral Perturbation Theory (ChPT) using the Linear Response Theory (LRT). More precisely, we show the behavior of DC conductivity and shear viscosity at low temperatures. To compute transport coefficients, the standard power counting of ChPT has to be modified. The effects derived from imposing unitarity are also analyzed. As physical applications in relativistic heavy-ion collisions, we show the relation of the DC conductivity to soft-photon production and phenomenological effects related to a non-zero shear viscosity. In addition, our values for the shear viscosity to entropy ratio satisfy the KSS bound.

PACS.

11.10.Wx Finite-temperature field theory 12.39.Fe Chiral Lagrangians 25.75.-q Relativistic heavy-ion collisions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    M. Le Bellac, Thermal Field Theory (Cambridge University Press, 2000).Google Scholar
  3. 3.
    S. Jeon, Phys. Rev. D 52, 3591 (1995).CrossRefADSGoogle Scholar
  4. 4.
    M.A. Valle Basagoiti, Phys. Rev. D 66, 045005 (2002).CrossRefADSGoogle Scholar
  5. 5.
    J.L. Goity, H. Leutwyler, Phys. Lett. B 228, 517 (2002).CrossRefADSGoogle Scholar
  6. 6.
    D. Fernández-Fraile, A. Gómez Nicola, Phys. Rev. D 73, 045025 (2006).CrossRefADSGoogle Scholar
  7. 7.
    A. Gómez Nicola, J.R. Pelaez, Phys. Rev. D 65, 054009 (2002).CrossRefADSGoogle Scholar
  8. 8.
    A. Dobado, A. Gómez Nicola, F.J. Llanes-Estrada, J.R. Pelaez, Phys. Rev. C 66, 055201 (2002).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    P. Arnold, G.D. Moore, L.G. Yaffe, JHEP 0011, 001 (2000).CrossRefADSGoogle Scholar
  10. 10.
    WA98 Collaboration (M.M. Aggarwal), Phys. Rev. Lett. 93, 022301 (2004).CrossRefADSGoogle Scholar
  11. 11.
    S. Turbide, R. Rapp, C. Gale, Phys. Rev. C 69, 014903 (2004)CrossRefADSGoogle Scholar
  12. 12.
    A. Dobado, F.J. Llanes-Estrada, Phys. Rev. D 69, 116004 (2004).CrossRefADSGoogle Scholar
  13. 13.
    D. Davesne, Phys. Rev. C 53, 3069 (1996).CrossRefADSGoogle Scholar
  14. 14.
    M. Prakash, M. Prakash, R. Venugopalan, G.M. Welke, Phys. Rev. Lett. 70, 1228 (1993).CrossRefADSGoogle Scholar
  15. 15.
    P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005).CrossRefADSGoogle Scholar
  16. 16.
    D. Teaney, Phys. Rev. D 68, 034913 (2003).ADSGoogle Scholar
  17. 17.
    L.P. Csernai, J.I. Kapusta, L.D. McLerran, Phys. Rev. Lett. 97, 152303 (2006).CrossRefADSGoogle Scholar
  18. 18.
    A. Nakamura, S. Sakai, Phys. Rev. Lett. 94, 72305 (2005)CrossRefADSGoogle Scholar
  19. 19.
    P. Gerber, H. Leutwyler, Nucl. Phys. B 321, 387 (1989).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  • D. Fernández-Fraile
    • 1
  • A. Gómez Nicola
    • 1
  1. 1.Departamentos de Fısica Teórica I y IIUniversidad ComplutenseMadridSpain

Personalised recommendations