The European Physical Journal A

, Volume 31, Issue 4, pp 424–428 | Cite as

The neutrinoless double-beta decay: A test for new physics

  • A. FaesslerEmail author
QNP 2006


The neutrinoless double-beta decay is not allowed in the Standard Model (SM) but it is allowed in most Grand Unified Theories (GUTs). The neutrino must be a Majorana particle (identical with its antiparticle) and must have a mass to allow the neutrinoless double-beta decay. Apart of one claim that the neutrinoless double-beta decay in 76Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for the neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present contribution, one discusses the accuracy of the present status of calculating the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters.


23.40.-s β decay; double β decay; electron and muon capture 21.60.-n Nuclear structure models and methods 12.60.-i Models beyond the standard model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Tomoda, A. Faessler, Phys. Lett. B 199, 475 (1987).CrossRefADSGoogle Scholar
  2. 2.
    A. Faessler, S. Kovalenko, F. Simkovic, J. Schwieger, Phys. Rev. Lett. 78, 183 (1997).CrossRefADSGoogle Scholar
  3. 3.
    O. Civitarese, A. Faessler, T. Tomoda, Phys. Lett. B 194, 11 (1987).CrossRefADSGoogle Scholar
  4. 4.
    J. Toivanen, J. Suhonen, Phys. Lett. 75, 410 (1995) and Phys. Rev. C 55, 2314 (1997). CrossRefGoogle Scholar
  5. 5.
    J. Schwieger, F. Simkovic, A. Faessler, Nucl. Phys. A 600, 179 (1996)CrossRefADSGoogle Scholar
  6. 6.
    V.A. Rodin, A. Faessler, F. Simkovic, P. Vogel, Phys. Rev. C 68, 044302 (2003)CrossRefADSGoogle Scholar
  7. 7.
    I.S. Towner, J.C. Hardy, preprint nucl-th/9504015 v1 (12 Apr 1995).Google Scholar
  8. 8.
    K. Muto, Phys. Lett. B 391, 243 (1997).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    O. Civitarese, J. Suhonen, Nucl. Phys. A 729, 867 (2003)CrossRefADSGoogle Scholar
  10. 10.
    J. Suhonen, S.B. Khadkikar, A. Faessler, Nucl. Phys. A 529, 727 (1991).CrossRefADSGoogle Scholar
  11. 11.
    Ch.C. Moustakidis, T.S. Kosmas, F. Simkovic, Amand Faessler, nucl-th/0511013.Google Scholar
  12. 12.
    R. Alvarez-Rodriguez, P. Sarriguren, E. Moya de Guerra, L. Pacearescu, Amand Faessler, F. Simkovic, Phys. Rev. C 70, 064309 (2004) nucl-th/0411039.CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of TuebingenGermany

Personalised recommendations