Advertisement

The European Physical Journal A

, Volume 31, Issue 4, pp 468–473 | Cite as

Scalar and axial-vector mesons

  • E. van BeverenEmail author
  • G. Rupp
QNP 2006

Abstract.

Almost thirty years ago, Penny G. Estabrooks asked “Where and what are the scalar mesons?” (P. Estabrooks, Phys. Rev. D 19, 2678 (1979)). The first part of her question can now be confidently responded (E. van Beveren et al., Z. Phys. C 30, 615 (1986)). However, with respect to the “What” many puzzles remain unanswered. Scalar and axial-vector mesons form part of a large family of mesons. Consequently, though it is useful to pay them some extra attention, there is no point in discussing them as isolated phenomena. The particularity of structures in the scattering of --basically-- pions and kaons with zero angular momentum is the absence of the centrifugal barrier, which allows us to “see” strong interactions at short distances. Experimentally observed differences and similarities between scalar and axial-vector mesons on the one hand, and other mesons on the other hand, are very instructive for further studies. Nowadays, there exists an abundance of theoretical approaches towards the mesonic spectrum, ranging from confinement models of all kinds, i.e., glueballs, and quark-antiquark, multiquark and hybrid configurations, to models in which only mesonic degrees of freedom are taken into account. Nature seems to come out somewhere in the middle, neither preferring pure bound states, nor effective meson-meson physics with only coupling constants and possibly form factors. As a matter of fact, apart from a few exceptions, like pions and kaons, Nature does not allow us to study mesonic bound states of any kind, which is equivalent to saying that such states do not really exist. Hence, instead of extrapolating from pions and kaons to the remainder of the meson family, it is more democratic to consider pions and kaons mesonic resonances that happen to come out below the lowest threshold for strong decay. Nevertheless, confinement is an important ingredient for understanding the many regularities observed in mesonic spectra. Therefore, excluding quark degrees of freedom is also not the most obvious way of describing mesons in general, and scalars and axial-vectors in particular.

PACS.

14.40.-n Mesons 14.40.Cs Other mesons with S = C = 0, mass < 2.5G eV 14.40.Ev Other strange mesons 14.40.Lb Charmed mesons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. van Beveren, G. Rupp, at http://cft.fis.uc.pt/eef/ QNP06\_Beveren/qnp06talk/spectrum/ccbarho.htm.Google Scholar
  2. 2.
    E. van Beveren, G. Rupp, at http://cft.fis.uc.pt/eef/ QNP06\_Beveren/qnp06talk/spectrum/ccbar.htmGoogle Scholar
  3. 3.
    BELLE Collaboration (S.K. Choi), Phys. Rev. Lett. 89, 102001 (2002)CrossRefADSGoogle Scholar
  4. 4.
    BABAR Collaboration (B. Aubert), Phys. Rev. Lett. 97, 222001 (2006).CrossRefADSGoogle Scholar
  5. 5.
    E. van Beveren, C. Dullemond, G. Rupp, Phys. Rev. D 21, 772 (1980)CrossRefADSGoogle Scholar
  6. 6.
    C.J. Isham, A. Salam, J.A. Strathdee, Nature Phys. Sci. 244, 82 (1973)ADSGoogle Scholar
  7. 7.
    E. van Beveren, T.A. Rijken, C. Dullemond, G. Rupp, Lect. Notes Phys. 211, 331 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    O. Oliveira, R.A. Coimbra, arXiv:hep-ph/0603046.Google Scholar
  9. 9.
    K.J. Juge, A. O'Cais, M.B. Oktay, M.J. Peardon, S.M. Ryan, PoS (LAT2005) 029 (2006).Google Scholar
  10. 10.
    N.A. Törnqvist, Ann. Phys. (N.Y.) 123, 1 (1979).CrossRefADSGoogle Scholar
  11. 11.
    E. Eichten, in Cargese 1975, Part A (Plenum Press, New York, 1976) pp. 305-328.Google Scholar
  12. 12.
    E.E. Kolomeitsev, M.F.M. Lutz, AIP Conf. Proc. 717, 665 (2004).CrossRefADSGoogle Scholar
  13. 13.
    P. Geiger, E.S. Swanson, Phys. Rev. D 50, 6855 (1994).CrossRefADSGoogle Scholar
  14. 14.
    E. van Beveren, G. Rupp, T.A. Rijken, C. Dullemond, Phys. Rev. D 27, 1527 (1983).CrossRefADSGoogle Scholar
  15. 15.
    E.B. Gregory, PoS (LAT2005) 027 (2006).Google Scholar
  16. 16.
    Particle Data Group Collaboration (S. Eidelman), Phys. Lett. B 592, 1 (2004).CrossRefADSGoogle Scholar
  17. 17.
    BELLE Collaboration (S.K. Choi), Phys. Rev. Lett. 91, 262001 (2003)CrossRefADSGoogle Scholar
  18. 18.
    G. Goldhaber, Phys. Rev. Lett. 37, 255 (1976)CrossRefADSGoogle Scholar
  19. 19.
    A. de Rújula, H. Georgi, S.L. Glashow, Phys. Rev. Lett. 37, 398 (1976).CrossRefADSGoogle Scholar
  20. 20.
    E.S. Swanson, Phys. Rep. 429, 243 (2006).CrossRefADSGoogle Scholar
  21. 21.
    E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 17, 3090 (1978)CrossRefADSGoogle Scholar
  22. 22.
    Yu.S. Kalashnikova, Phys. Rev. D 72, 034010 (2005).CrossRefADSGoogle Scholar
  23. 23.
    C. Albertus, arXiv:hep-ph/0610062, these proceedings.Google Scholar
  24. 24.
    N.A. Törnqvist, Z. Phys. C 68, 647 (1995).CrossRefADSGoogle Scholar
  25. 25.
    M. Harada, F. Sannino, J. Schechter, Phys. Rev. D 54, 1991 (1996).CrossRefADSGoogle Scholar
  26. 26.
    M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 730, 392 (2004).CrossRefADSGoogle Scholar
  27. 27.
    S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985).CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    E. van Beveren, G. Rupp, Phys. Rev. Lett. 91, 012003 (2003)CrossRefADSGoogle Scholar
  29. 29.
    BABAR Collaboration (B. Aubert), Phys. Rev. Lett. 90, 242001 (2003).CrossRefADSGoogle Scholar
  30. 30.
    S. Tosi, these proceedings.Google Scholar
  31. 31.
    D.S. Hwang, D.-W. Kim, Phys. Lett. B 601, 137 (2004).CrossRefADSGoogle Scholar
  32. 32.
    Yu.A. Simonov, J.A. Tjon, Phys. Rev. D 70, 114013 (2004).CrossRefADSGoogle Scholar
  33. 33.
    T. Matsuki, T. Morii, Phys. Rev. D 56, 5646 (1997) (Aust. J. Phys. 50, 163 (1997)).CrossRefADSGoogle Scholar
  34. 34.
    T. Matsuki, T. Morii, K. Sudoh, arXiv:hep-ph/0605019.Google Scholar
  35. 35.
    P. Bicudo, Nucl. Phys. A 748, 537 (2005).CrossRefADSGoogle Scholar
  36. 36.
    T. Mehen, R.P. Springer, Phys. Rev. D 72, 034006 (2005).CrossRefADSGoogle Scholar
  37. 37.
    M.A. Nowak, J. Wasiluk, Acta Phys. Pol. B 35, 3021 (2004).ADSGoogle Scholar
  38. 38.
    P. Bicudo, Phys. Rev. D 74, 036008 (2006).CrossRefADSGoogle Scholar
  39. 39.
    A. Zhang, Phys. Rev. D 72, 017902 (2005).CrossRefADSGoogle Scholar
  40. 40.
    S. Okubo, Phys. Lett. 5, 165 (1963)zbMATHCrossRefMathSciNetADSGoogle Scholar
  41. 41.
    E. van Beveren, G. Rupp, Int. J. Theor. Phys. Group Theor. Nonlin. Opt. 11, 179 (2006).Google Scholar
  42. 42.
    E. van Beveren, G. Rupp, Phys. Rev. Lett. 97, 202001 (2006).CrossRefADSGoogle Scholar
  43. 43.
    G. Rupp, arXiv:hep-ph/0610188, these proceedings.Google Scholar
  44. 44.
    P. Colangelo, F. De Fazio, S. Nicotri, Phys. Lett. B 642, 48 (2006).CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    E. van Beveren,, Z. Phys. C 30, 615 (1986).CrossRefADSGoogle Scholar
  46. 46.
    E.E. Kolomeitsev, M.F.M. Lutz, Phys. Lett. B 582, 39 (2004).CrossRefADSGoogle Scholar
  47. 47.
    L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, PoS (HEP2005) 105 (2006).Google Scholar
  48. 48.
    H.Y. Cheng, W.S. Hou, Phys. Lett. B 566, 193 (2003).CrossRefADSGoogle Scholar
  49. 49.
    K. Terasaki, arXiv:hep-ph/0309119.Google Scholar
  50. 50.
    K. Terasaki, arXiv:hep-ph/0609223, these proceedings.Google Scholar
  51. 51.
    D. Bećirević, S. Fajfer, S. Prelovšek, Phys. Lett. B 599, 55 (2004).CrossRefADSGoogle Scholar
  52. 52.
    Particle Data Group (T.A. Lasinski), Rev. Mod. Phys. 45, S1 (1973).Google Scholar
  53. 53.
    Particle Data Group (C. Bricman), Rev. Mod. Phys. 52, S1 (1980).Google Scholar
  54. 54.
    F.E. Close, N.A. Törnqvist, J. Phys. G 28, R249 (2002).Google Scholar
  55. 55.
    P. Roy, Phys. Rev. 168, 1708 (1968)CrossRefADSGoogle Scholar
  56. 56.
    J.L. Basdevant, B.W. Lee, Phys. Rev. D 2, 1680 (1970).CrossRefADSGoogle Scholar
  57. 57.
    D. Iagolnitzer, J. Zinn-Justin, J.B. Zuber, Nucl. Phys. B 60, 233 (1973).CrossRefADSGoogle Scholar
  58. 58.
    M.D. Scadron, Phys. Rev. D 26, 239 (1982).CrossRefADSGoogle Scholar
  59. 59.
    R. Delbourgo, M.D. Scadron, Phys. Rev. Lett. 48, 379 (1982).CrossRefADSGoogle Scholar
  60. 60.
    R.L. Jaffe, Phys. Rev. D 15, 267 (1977).CrossRefADSGoogle Scholar
  61. 61.
    E. van Beveren, G. Rupp, arXiv:hep-ph/0207022.Google Scholar
  62. 62.
    J.L. Rosner, Phys. Rev. D 74, 076006 (2006).CrossRefADSGoogle Scholar
  63. 63.
    G. Janssen, B.C. Pearce, K. Holinde, J. Speth, Phys. Rev. D 52, 2690 (1995).CrossRefADSGoogle Scholar
  64. 64.
    N.A. Törnqvist, M. Roos, Phys. Rev. Lett. 76, 1575 (1996).CrossRefADSGoogle Scholar
  65. 65.
    A.V. Anisovich, A.V. Sarantsev, Phys. Lett. B 413, 137 (1997).CrossRefADSGoogle Scholar
  66. 66.
    P. Minkowski, W. Ochs, Eur. Phys. J. C 9, 283 (1999).ADSGoogle Scholar
  67. 67.
    S.N. Cherry, M.R. Pennington, Nucl. Phys. A 688, 823 (2001).CrossRefADSGoogle Scholar
  68. 68.
    M. Boglione, M.R. Pennington, Phys. Rev. D 65, 114010 (2002).CrossRefADSGoogle Scholar
  69. 69.
    S. Ishida, M. Ishida, Taku Ishida, Kunio Takamatsu, Tsuneaki Tsuru, Prog. Theor. Phys. 98, 621 (1997)CrossRefADSGoogle Scholar
  70. 70.
    D. Black, A.H. Fariborz, F. Sannino, J. Schechter, Phys. Rev. D 59, 074026 (1999)CrossRefADSGoogle Scholar
  71. 71.
    M.K. Volkov, V.L. Yudichev, Eur. Phys. J. C 10, 223 (2001).ADSGoogle Scholar
  72. 72.
    Y.B. Dai, Y.L. Wu, Eur. Phys. J. C 39, S1 (2005).Google Scholar
  73. 73.
    H.Q. Zheng, Z.Y. Zhou, G.Y. Qin, Z.G. Xiao, J.J. Wang, N. Wu, Nucl. Phys. A 733, 235 (2004).CrossRefADSGoogle Scholar
  74. 74.
    SCALAR Collaboration (T. Kunihiro, S. Muroya, A. Nakamura, C. Nonaka, M. Sekiguchi, H. Wada), Nucl. Phys. Proc. Suppl. 129, 242 (2004).CrossRefADSGoogle Scholar
  75. 75.
    Y. Oh, H. Kim, Phys. Rev. C 74, 015208 (2006).CrossRefADSGoogle Scholar
  76. 76.
    E791 Collaboration (E.M. Aitala), Phys. Rev. Lett. 89, 121801 (2002).CrossRefADSGoogle Scholar
  77. 77.
    A. Reis, these proceedings.Google Scholar
  78. 78.
    J.A. Oller, Phys. Rev. D 71, 054030 (2005).CrossRefADSGoogle Scholar
  79. 79.
    P. Estabrooks, R.K. Carnegie, A.D. Martin, W.M. Dunwoodie, T.A. Lasinski, D.W. Leith, Nucl. Phys. B 133, 490 (1978)CrossRefADSGoogle Scholar
  80. 80.
    E791 Collaboration (E.M. Aitala), Phys. Rev. Lett. 86, 770 (2001).CrossRefADSGoogle Scholar
  81. 81.
    J.A. Oller, E. Oset, J.R. Peláez, Phys. Rev. D 59, 074001 (1999)CrossRefADSGoogle Scholar
  82. 82.
    BES Collaboration (M. Ablikim), Phys. Lett. B 633, 681 (2006).CrossRefADSGoogle Scholar
  83. 83.
    D.V. Bugg, Phys. Lett. B 632, 471 (2006).CrossRefADSGoogle Scholar
  84. 84.
    P. Costa, M.C. Ruivo, C.A. de Sousa, Yu.L. Kalinovsky, Phys. Rev. D 71, 116002 (2005).CrossRefADSGoogle Scholar
  85. 85.
    A.A. Osipov, B. Hiller, J. da Providência, Phys. Lett. B 634, 48 (2006).CrossRefADSGoogle Scholar
  86. 86.
    A.A. Osipov, B. Hiller, A.H. Blin, J. da Providência, to be published in Ann. Phys. (N.Y.) doi:10.1016/j.aop. 2006.08.004, arXiv:hep-ph/0607066.Google Scholar
  87. 87.
    E. van Beveren, J.E.G. Costa, F. Kleefeld, G. Rupp, Phys. Rev. D 74, 037501 (2006).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Centro de Fısica Teórica, Departamento de FısicaUniversidade de CoimbraCoimbraPortugal
  2. 2.Centro de Fısica das Interacções FundamentaisInstituto Superior TécnicoLisboaPortugal

Personalised recommendations