The European Physical Journal A

, Volume 31, Issue 2, pp 207–212 | Cite as

Leading-order 2πγ exchange NN interaction: Central potentials proportional to gA 0 and gA 2

  • N. KaiserEmail author
Regular Article - Hadron Physics


We calculate at two-loop order in chiral perturbation theory the electromagnetic corrections to the leading-order 2π exchange NN interaction proportional to g A 0 and g A 2. The resulting 2πγ exchange potential contains isospin-breaking components which reach up to about -2% of the corresponding isovector 2π exchange potential. With a value of only -17keV at r = m π -1 = 1.4fm the charge-independence breaking central potential obtained here is negligibly small in comparison to the one generated by the isoscalar c3 contact vertex. Our calculation confirms that the largest long-range isospin-violating NN potentials arise from the 2πγ exchange diagrams involving the large low-energy constants c 4 ≃ - c 3 ≃ 3.3GeV^-1 representing the important Δ(1232) dynamics.


12.20.Ds Specific calculations 13.40.Ks Electromagnetic corrections to strong- and weak-interaction processes 21.30.Cb Nuclear forces in vacuum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. van Kolck, M.C.M. Rentmeester, J.L. Friar, T. Goldman, Swart, Phys. Rev. Lett. 80, 4386 (1998).CrossRefADSGoogle Scholar
  2. 2.
    J.L. Friar, U. van Kolck, Phys. Rev. C 60, 034006 (1999).CrossRefADSGoogle Scholar
  3. 3.
    J.L. Friar, U. van Kolck, G.L. Payne, S.A. Coon, Phys. Rev. C 68, 024003 (2003).CrossRefADSGoogle Scholar
  4. 4.
    E. Epelbaum, Ulf-G. Meißner, Phys. Rev. C 72, 044001 (2005).CrossRefADSGoogle Scholar
  5. 5.
    N. Kaiser, Phys. Rev. C 73, 044001 (2006).CrossRefADSGoogle Scholar
  6. 6.
    N. Kaiser, Phys. Rev. C 73, 064006 (2006)ADSGoogle Scholar
  7. 7.
    E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006) and references therein.CrossRefADSGoogle Scholar
  8. 8.
    R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 74, 045205 (2006).CrossRefADSGoogle Scholar
  9. 9.
    N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625, 758 (1998).CrossRefADSGoogle Scholar
  10. 10.
    V. Bernard, N. Kaiser, Ulf-G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995).CrossRefADSGoogle Scholar
  11. 11.
    M.E. Peskin, D.V. Schroeder, Quantum Field Theory (Addison-Wesley Publishing Company, 1995) Chapt. 17.5.Google Scholar
  12. 12.
    N. Kaiser, Phys. Rev. C 62, 024001 (2000).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Physik Department T39Technische Universität MünchenGarchingGermany

Personalised recommendations