Advertisement

The European Physical Journal A

, Volume 31, Issue 2, pp 177–183 | Cite as

Absorption in the final state in reactions and decays in the medium

  • V. I. NazarukEmail author
Regular Article - Nuclear Structure and Reactions

Abstract.

The role of strong absorption of particles in intermediate and final states has been considered. The range of applicability of phenomenological models of absorption has been studied. This model is nonuniversal. Its applicability depends on the type of interaction Hamiltonian and matrix element used. We also demonstrate that the violation of the unitarity condition can produce a qualitative error in the results. The absorption (decay) in the final state does not tend to suppress the total process probability as well as the probability of the channel corresponding to absorption. This is true for the reactions, decays and n¯ conversion in the medium.

PACS.

24.10.-i Nuclear reaction models and methods 24.50.+g Direct reactions 11.30.Fs Global symmetries (e.g. , baryon number, lepton number) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.I. Nazaruk, Mod. Phys. Lett. A 21, 2189 (2006)CrossRefADSGoogle Scholar
  2. 2.
    M. Feshbach, C.E. Porter, V.F. Weisskopf, Phys. Rev. 90, 166 (1953)CrossRefADSGoogle Scholar
  3. 3.
    V.A. Kuzmin, JETF Lett. 12, 228 (1970)ADSGoogle Scholar
  4. 4.
    R.N. Mohapatra, R.E. Marshak, Phys. Rev. Lett. 44, 1316 (1980).CrossRefADSGoogle Scholar
  5. 5.
    K.G. Chetyrkin, M.V. Kazarnovsky, V.A. Kuzmin, M.E. Shaposhnikov, Phys. Lett. B 99, 358 (1981).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    N. Austern, Direct Nuclear Reaction Theories (Wiley-Interscience, New York, 1970).Google Scholar
  7. 7.
    A. Bieniek, Phys. Lett. B 526, 329 (2002)CrossRefADSGoogle Scholar
  8. 8.
    V.K. Madas, L. Roka, E. Oset, Phys. Rev. C 71, 065202 (2005).CrossRefADSGoogle Scholar
  9. 9.
    M.L. Good, Phys. Rev. 106, 591 (1957).CrossRefADSGoogle Scholar
  10. 10.
    L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).CrossRefADSGoogle Scholar
  11. 11.
    P.G.H. Sandars, J. Phys. G 6, L161 (1980).Google Scholar
  12. 12.
    W.M. Alberico, Nucl. Phys. A 523, 488 (1991).CrossRefADSGoogle Scholar
  13. 13.
    V.I. Nazaruk, Phys. Rev. C 58, R1884 (1998).Google Scholar
  14. 14.
    H. Takita, Phys. Rev. D 34, 902 (1986).CrossRefADSGoogle Scholar
  15. 15.
    V.I. Nazaruk, Yad. Fiz. 56, 153 (1993).Google Scholar
  16. 16.
    M. Baldo-Ceolin, Phys. Lett. B 236, 95 (1990).ADSGoogle Scholar
  17. 17.
    T. Inone, E. Oset, Nucl. Phys. A 710, 354 (2002)CrossRefADSGoogle Scholar
  18. 18.
    E. Oset, Nucl. Phys. A 721, 58 (2003).CrossRefGoogle Scholar
  19. 19.
    M. Levy, Nuovo Cimento 13, 115 (1959).zbMATHGoogle Scholar
  20. 20.
    A. Bohm, N.L. Harshman, Nucl. Phys. B 581, 91 (2000).CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    A. Bohm, Fortschr. Phys. 51, 599Google Scholar
  22. 22.
    V.I. Nazaruk, Phys. Lett. B 337, 328 (1994).CrossRefADSGoogle Scholar
  23. 23.
    P. Fernandez de Cordona, E. Oset, Phys. Rev. C 46, 1697 (1992).CrossRefADSGoogle Scholar
  24. 24.
    L. Alvarez-Ruso, P. Fernandez de Cordoba, E. Oset, Nucl. Phys. A 606, 407 (1996).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute for Nuclear Research of RASMoscowRussia

Personalised recommendations