Multifoil UCx target for the SPES project --An update

  • A. Andrighetto
  • C. M. Antonucci
  • S. Cevolani
  • C. Petrovich
  • M. Santana Leitner
Tools for Theory and Experiment


The target system is one of the key issues for the facilities aimed at the production of neutron-rich radioactive ion beams. In the framework of the SPES project (Study for the Production of Exotic Species), the possibility of using a target configuration with a proton beam (40MeV, 0.2mA) directly impinging on multiple uranium carbide disks is investigated. The 238U fission fragments constitute the source for the exotic beams and for this purpose the disks are placed inside a graphite box at 2000 °C. The target is split into several thin disks in order to allow the cooling of the system by thermal radiation. In this way about ∼ 1013 fissions s -1 are obtained with a relative simple system and with relative low costs. Further steps have been performed compared to previous publications and now all the main parameters of the system have been analysed by means of calculation codes: the fission rates and the fission fragment distribution; the power deposition and the thermal analysis; the thermo-mechanical behaviours of the disks; the effusive and diffusive extraction release properties of the target.


29.25.Rm Sources of radioactive nuclei 24.10.Lx Monte Carlo simulations (including hadron and parton cascades and string breaking models) 25.85.Ge Charged-particle-induced fission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bracco, A. Pisent (Editors), SPES Technical Design for an Advanced Exotic Ion Beam Facility at LNL, (REP)181/02 (LNL-INFN, 2002).Google Scholar
  2. 2.
    A. Andrighetto, J. Li, C. Petrovich, Q. You, Nucl. Instrum. Methods B 204, 205 (2003).CrossRefADSGoogle Scholar
  3. 3.
    A. Andrighetto, S. Cevolani, C. Petrovich, Eur. Phys. J. A 25, 41 (2005).CrossRefADSGoogle Scholar
  4. 4.
    J. Cornell (Editor), The EURISOL Report -- A feasibility study for a EURopean Isotope-Separation-On-Line radioactive ion beam facility (GANIL, 2003) http:// Scholar
  5. 5.
    A. Andrighetto, C.M. Antonucci, S. Cevolani, C. Petrovich, ENEA contribution to the design of the thin target for the SPES project, FIS-P815-020 (ENEA, 2006) http:// Scholar
  6. 6.
    Denise B. Pelowitz (Editor), MCNPX${}^{TM}$ User's manual, Version 2.5.0, LA-CP-05-0369 (2005).Google Scholar
  7. 7.
    H.W. Bertini, Phys. Rev. 131, 1801 (1963).CrossRefADSGoogle Scholar
  8. 8.
    J. Barish, T.A. Gabriel, F.S. Alsmiller, R.G. Alsmiller jr., HETFIS High-Energy Nucleon-Meson Transport Code with Fission, ORNL-TM-7882 report (Oak Ridge National Laboratory, 1981).Google Scholar
  9. 9.
    F. Atchison, Spallation and Fission in Heavy Metal Nuclei under Medium Energy Proton Bombardment, in Targets for Neutron Beam Spallation Sources, Jul-Conf-34, Kernforschungsanlage Julich GmbH (1980).Google Scholar
  10. 10.
    T.W. Armstrong, P. Cloth, D. Filges, R.D. Neef, Nucl. Instrum. Methods Phys. Res. 222, 540 (1984).CrossRefGoogle Scholar
  11. 11.
    B.L. Tracy, Phys. Rev. C 5, 222 (1972).CrossRefADSGoogle Scholar
  12. 12.
    V.A. Rubchenya, Nucl. Instrum. Methods Phys. Res. A 463, 653 (2001).CrossRefADSGoogle Scholar
  13. 13.
    J. Äystö, V. Rubchenya, Eur. Phys. J. A 13, 109 (2002). CrossRefADSGoogle Scholar
  14. 14.
    M. Huhta, Phys. Lett. B 405, 230 (1997).CrossRefADSGoogle Scholar
  15. 15.
    M.G. Saint-Laurent, Spiral Phase-II Final Report (2001) files/Spiral\_Phase2.pdf.Google Scholar
  16. 16.
    L.C. Carraz, Nucl. Instrum. Methods 158, 69 (1979).CrossRefGoogle Scholar
  17. 17.
    R.C. Weast (Editor), Handbook of Chemistry and Physics (CRC Press, 1974).Google Scholar
  18. 18.
    S. McLain, J.H. Martens (Editors), Reactor Handbook (Interscience Publishers, 1964).Google Scholar
  19. 19.
    J.A. Nolen, M. Petra, J. Greene, Thermal Conductivity Measurements of Porous Materials at High Temperatures, Physics Division Annual Report 1999, edited by K.J. Thayer (ANL, 2000).Google Scholar
  20. 20.
    S. Cevolani, Valutazioni termiche su un Multifoil Target per TRADE, FIS-P99R-003 (ENEA, 2004).Google Scholar
  21. 21.
    S. Cevolani, Modelli per la determinazione dei fattori di vista fra mesh anulari di dischi coassiali paralleli, FIS-P815-012 (ENEA, 2005).Google Scholar
  22. 22.
    G.D. Alton, J.R. Beene, Y. Liu, Nucl. Instrum. Methods Phys. Res. A 438, 190 (1999).CrossRefADSGoogle Scholar
  23. 23.
    J.P. Greene, A. Levand, J. Nolen, T. Burtseva, Nucl. Phys. A 746, 425c (2004).CrossRefADSGoogle Scholar
  24. 24.
    Hj. Matzke, Science of Advanced LMFBR Fuels (North Holland, 1980).Google Scholar
  25. 25.
    Balankin, Atomn. Energ. 48, 49 (1980).CrossRefGoogle Scholar
  26. 26.
    Timoshenko, Goodier, Theory of Elasticity (McGraw Hill, 1970).Google Scholar
  27. 27.
    Z. Zudans, T.C. Yen, W.H. Steigelmann, Thermal Stress Techniques in the Nuclear Industry (Elsevier, 1965).Google Scholar
  28. 28.
    M. Santana Leitner, A Monte Carlo Code to Optimize the Production of Radioactive Ion Beams by the ISOL Technique, CERN-Thesis-2005-049, UPC-ETSEIB (Barcelona, 2005) p. 311.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • A. Andrighetto
    • 1
  • C. M. Antonucci
    • 2
  • S. Cevolani
    • 2
  • C. Petrovich
    • 2
  • M. Santana Leitner
    • 3
  1. 1.INFN Laboratori Nazionali di LegnaroLegnaro (PD)Italy
  2. 2.ENEABolognaItaly
  3. 3.AB-DepartmentCERNGeneve 23Switzerland

Personalised recommendations