Light meson spectrum and classical symmetries of QCD

  • S. S. AfoninEmail author
Hadron Physics


Modern spectroscopic data on the light non-strange meson spectrum is analyzed. It is argued that the observed regularities of the experimental spectrum for highly excited states favour a partial restoration of all approximate classical symmetries of a QCD Lagrangian (conformal, chiral and axial) broken by quantum corrections. The rate of restoration of classical symmetries is estimated. The dependence of the resonance widths on the corresponding masses is systematically checked. On average, it turns out to be universal for high excitations as predicted by the effective string description.


12.38.Aw General properties of QCD (dynamics, confinement, etc.) 12.38.Qk Experimental tests 14.40.-n Mesons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.M. Braun, G.P. Korchemsky, D. Müller, Prog. Part. Nucl. Phys. 51, 311 (2003).CrossRefADSGoogle Scholar
  2. 2.
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000).MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    G. 't Hooft, Nucl. Phys. B 72, 461 (1974)CrossRefADSGoogle Scholar
  4. 4.
    S. Eidelman, Phys. Lett. B 592, 1 (2004).CrossRefADSGoogle Scholar
  5. 5.
    D.V. Bugg, Phys. Rep. 397, 257 (2004).CrossRefADSGoogle Scholar
  6. 6.
    V. Barger, D. Cline, Phys. Rev. 182, 1849 (1969).CrossRefADSGoogle Scholar
  7. 7.
    A.V. Anisovich, V.V. Anisovich, A.V. Sarantsev, Phys. Rev. D 62, 051502(R) (2000).CrossRefADSGoogle Scholar
  8. 8.
    C. Lovelace, Phys. Lett. B 28, 264 (1968)CrossRefADSGoogle Scholar
  9. 9.
    O. Kaczmarek, F. Zantow, Phys. Rev. D 71, 114510 (2005).CrossRefADSGoogle Scholar
  10. 10.
    S.S. Afonin, Phys. Lett. B 639, 258 (2006), hep-ph/0603166.CrossRefADSGoogle Scholar
  11. 11.
    G. Höhler, in Physics with GeV-particle Beams, edited by H. Machner, K. Sistemish (World Scientific, Singapore, 1995) p. 198Google Scholar
  12. 12.
    M. Kirchbach, Mod. Phys. Lett. A 12, 2373Google Scholar
  13. 13.
    L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 4 (Nauka, Moscow, 1989) Chapt. 1, Sect. 5.Google Scholar
  14. 14.
    M. Shifman, hep-ph/0507246.Google Scholar
  15. 15.
    M. Kirchbach, Czech. J. Phys. 43, 319 (1993)CrossRefADSGoogle Scholar
  16. 16.
    L.Ya. Glozman, Phys. Lett. B 587, 69 (2004). CrossRefADSGoogle Scholar
  17. 17.
    S.S. Afonin, A.A. Andrianov, V.A. Andrianov, D. Espriu, JHEP 04, 039 (2004)CrossRefADSGoogle Scholar
  18. 18.
    S.S. Afonin, D. Espriu, to be published in JHEPGoogle Scholar
  19. 19.
    S.S. Afonin, hep-ph/0606291.Google Scholar
  20. 20.
    E. Klempt, Phys. Lett. B 559, 144 (2003).CrossRefADSGoogle Scholar
  21. 21.
    A.V. Anisovich, hep-ph/0508260.Google Scholar
  22. 22.
    F.J. Gilman, H. Harari, Phys. Rev. 165, 1803 (1968)CrossRefADSGoogle Scholar
  23. 23.
    A. Casher, H. Neuberger, S. Nussinov, Phys. Rev. D 20, 179 (1979).MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    M. Shifman, hep-ph/0009131.Google Scholar
  25. 25.
    G. 't Hooft, Nucl. Phys. B 75, 461 (1974)CrossRefADSGoogle Scholar
  26. 26.
    B. Blok, M. Shifman, D. Zhang, Phys. Rev. D 57, 2691 (1998)CrossRefADSGoogle Scholar
  27. 27.
    A curious historical remark: Balmer guessed the spectrum of excitations for the hydrogen atom just scrutinizing the available experimental data. Subsequently, the derivation of this spectrum within the Bohr model marked a milestone in the foundation of Quantum Mechanics. At present, we may be close to Balmer's situation in the case of light meson spectrumGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Departament d'Estructura i Constituents de la Matèria and CER for Astrophysics, Particle Physics and CosmologyUniversitat de BarcelonaSpain

Personalised recommendations