Dynamics of α-clusters in N = Z nuclei

  • W. von OertzenEmail author
Nuclear Structure and Reactions


The systematics for binding energies per α-particle in N = Z nuclei, E /N α, are studied up to 164Pb. It is shown that, although a geometrical model can be used to explain the systematics for light nuclei, the binding energy per α-particle exhibits structures which are due to the well-known shells of the mean field of nucleons in nuclei. The overall dependence of E /N α on N α in N = Z nuclei (for the ground-state masses) can be described in a liquid-drop model of α-particles. Conditions for a phase change with the formation of an α-particle condensate, a dilute Bose gas in excited compound nuclei are discussed for E /N α = 0, at the thresholds. This is achieved when the binding energy per nucleon in nuclei is equal to or smaller than in the α-cluster. At somewhat smaller excitation energies the appearance of a Bose gas with a closed-shell core (N = Z, e.g. of 40Ca) is proposed within the same concept. The experimental observation of the decay of such condensed α-particle states is proposed with the coherent emission of several correlated α-particles not described by the Hauser-Feshbach approach for compound-nucleus decay. This decay will be observed by the emission of unbound resonances in the form of 8Be and 12C * (0+ 2) clusters.


21.10.-k Properties of nuclei; nuclear energy levels 21.60.Gx Cluster models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aage Bohr, Ben R. Mottelson, Nuclear Structure, Vol. I (W.A. Benjamin Inc., 1975).Google Scholar
  2. 2.
    H. Horiuchi, K. Ikeda, Cluster Model of the Nucleus, Int. Rev. Nucl. Phys., Vol. 4 (World Scientific, Singapore, 1986) p. 1 and references therein.Google Scholar
  3. 3.
    H. Horiuchi, Y. Kanada-En'yo, Nucl. Phys. A 616, 394c (1997).CrossRefADSGoogle Scholar
  4. 4.
    H. Horiuchi, Proceedings of the 7-th International Conference on Clustering Aspects of Nuclear Structure and Dynamics (World Scientific, 2000) p. 405.Google Scholar
  5. 5.
    Y. Kanada-En'yo, H. Horiuchi, Prog. Theor. Phys. Suppl. 142, 206 (2001). ADSGoogle Scholar
  6. 6.
    H. Feldmeier, K. Bieler, J. Schnack, Nucl. Phys. A 586, 493 (1995).CrossRefADSGoogle Scholar
  7. 7.
    T. Neff, H. Feldmeier, R. Roth, Nucl. Phys. A 752, 94 (2005).Google Scholar
  8. 8.
    W. von Oertzen, Z. Phys. A 354, 355 (1997)CrossRefGoogle Scholar
  9. 9.
    H. Horiuchi, K. Ikeda, Prog. Theor. Phys. A 40, 277 (1968).CrossRefADSGoogle Scholar
  10. 10.
    H. Horiuchi, Prog. Theor. Phys. 43, 375 (1970).CrossRefADSGoogle Scholar
  11. 11.
    H. Horiuchi, K. Ikeda, Y. Suzuki, Prog. Theor. Phys. Suppl. 52, Chapt. 3 (1972).Google Scholar
  12. 12.
    Tz. Kokalova, Eur. Phys. J. A 23, 19 (2005).CrossRefADSGoogle Scholar
  13. 13.
    Tz. Kokalova, N. Itagaki, Phys. Rev. Lett. 96, 192502 (2006).CrossRefADSGoogle Scholar
  14. 14.
    G. Gamow, Proc. R. Soc. London, Ser. A 126, 632 (1930).zbMATHGoogle Scholar
  15. 15.
    C.F. von Weizsäcker, Naturwissenschaften 26, 209 (1938).CrossRefGoogle Scholar
  16. 16.
    L.R. Hafstad, E. Teller, Phys. Rev. 54, 681 (1938).CrossRefADSGoogle Scholar
  17. 17.
    D.M. Brink, Proceedings of the International School of Physics ``Enrico Fermi'', Course XXXVI, edited by C. Bloch (Academic Press, New York, 1966) p. 247.Google Scholar
  18. 18.
    J. Zhang, W.D.M. Rae, Nucl. Phys. A 564, 252 (1993).CrossRefADSGoogle Scholar
  19. 19.
    J. Zhang, W.D.M. Rae, A.C. Merchant, Nucl. Phys. A 575, 61 (1994).CrossRefADSGoogle Scholar
  20. 20.
    N. Itagaki, S. Aoyama, S. Okabe, K. Ikeda, Phys. Rev. C 70, 054307 (2004).CrossRefADSGoogle Scholar
  21. 21.
    G. Audi, Nucl. Phys. A 729, 3 (2003).CrossRefADSGoogle Scholar
  22. 22.
    V.I. Isakov, Part. Nucl. Lett. 5, 44 (2000).Google Scholar
  23. 23.
    D.H.E. Gross, Phys. Lett. B 574, 186 (2003) and references therein.CrossRefADSGoogle Scholar
  24. 24.
    O. Echt, K. Sattler, E. Recknagel, Phys. Rev. Lett. 47, 1121 (1981).CrossRefADSGoogle Scholar
  25. 25.
    H. Frauenfelder, E.M. Henley, Subatomic Physics, Physics Series (Prentice Hall Inc., Englewood Cliffs, NJ, 1974) p. 546.Google Scholar
  26. 26.
    G. Röpke, A. Schnell, P. Schuck, P. Nozieres, Phys. Rev. Lett. 80, 3177 (1998).CrossRefADSGoogle Scholar
  27. 27.
    A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87, 192501 (2001).CrossRefADSGoogle Scholar
  28. 28.
    P. Schuck, Y. Funaki, H. Horiuchi, G, Röpke, A. Tohsaki, T. Yamada, Nucl. Phys. A 738, 94 (2004).CrossRefADSGoogle Scholar
  29. 29.
    T. Yamada, P. Schuck, Phys. Rev. C 69, 024309 (2004).CrossRefADSGoogle Scholar
  30. 30.
    D.J. Amit, Y. Verbin, Statistical Physics, An Introductory Course (World Scientific, 1995).Google Scholar
  31. 31.
    H.O.U. Fynbo, Eur. Phys. J. A 15, 135 (2002).CrossRefADSGoogle Scholar
  32. 32.
    R. Broglia, Ann. Phys. (N.Y.) 80, 60 (1973).CrossRefADSGoogle Scholar
  33. 33.
    W. von Oertzen, A. Vitturi, Rep. Prog. Phys. 64, 1247 (2001).CrossRefADSGoogle Scholar
  34. 34.
    W. von Oertzen, Phys. Lett. B 61, 223 (1976).CrossRefADSGoogle Scholar
  35. 35.
    I. Last, J. Jortner, Phys. Rev. A 62, 013201 (2000) and references therein.CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Fachbereich PhysikFreie Universität BerlinBerlinGermany
  2. 2.Hahn-Meitner-Institut BerlinBerlinGermany

Personalised recommendations