Advertisement

Static observables of relativistic three-fermion systems with instantaneous interactions

  • C. Haupt
  • B. Metsch
  • H. -R. Petry
Hadron Physics

Abstract.

We show that static properties like the charge radius and the magnetic moment of relativistic three-fermion bound states with instantaneous interactions can be formulated as expectation values with respect to intrinsically defined wave functions. The resulting operators can be given a natural physical interpretation in accordance with relativistic covariance. We also indicate how the formalism may be generalized to arbitrary moments. The method is applied to the computation of static baryon properties with numerical results for the nucleon charge radii and the baryon octet magnetic moments. In addition, we make predictions for the magnetic moments of some selected nucleon resonances and discuss the decomposition of the nucleon magnetic moments in contributions of spin and angular momentum, as well as the evolution of these contributions with decreasing quark mass.

PACS.

11.10.St Bound and unstable states; Bethe-Salpeter equations 12.39.Ki Relativistic quark model 13.40.Em Electric and magnetic moments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Löring, K. Kretzschmar, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 309 (2001) [arXiv:hep-ph/0103287].CrossRefADSGoogle Scholar
  2. 2.
    U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 395 (2001) [arXiv:hep-ph/0103289].CrossRefADSGoogle Scholar
  3. 3.
    U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 447 (2001) [arXiv:hep-ph/0103290].CrossRefADSGoogle Scholar
  4. 4.
    D. Merten, U. Löring, K. Kretzschmar, B. Metsch, H.R. Petry, Eur. Phys. J. A 14, 477 (2002) [arXiv:hep-ph/0204024].CrossRefADSGoogle Scholar
  5. 5.
    T. Van Cauteren, D. Merten, T. Corthals, S. Janssen, B. Metsch, H.R. Petry, J. Ryckebusch, Eur. Phys. J. A 20, 283 (2004) [arXiv:nucl-th/0310058].CrossRefADSGoogle Scholar
  6. 6.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, 1995).Google Scholar
  7. 7.
    S. Eidelman, Phys. Lett. B 592, 1 (2004).CrossRefADSGoogle Scholar
  8. 8.
    M. Kotulla, Phys. Rev. Lett. 89, 272001 (2002) [arXiv:nucl-ex/0210040].CrossRefADSGoogle Scholar
  9. 9.
    CSSM Lattice Collaboration (J.B. Zhang, P.O. Bowman, D.B. Leinweber, A.G. Williams, F.D.R. Bonnet), Phys. Rev. D 70, 034505 (2004) [arXiv:hep-lat/0301018].CrossRefADSGoogle Scholar
  10. 10.
    H.D. Politzer, Nucl. Phys. B 117, 397 (1976).CrossRefADSGoogle Scholar
  11. 11.
    W. Detmold, D.B. Leinweber, W. Melnitchouk, A.W. Thomas, S.V. Wright, Pramana 57, 251 (2001) [arXiv:nucl-th/0104043].Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Helmholtz-Institut für Strahlen- und KernphysikBonnGermany

Personalised recommendations