Charmed baryons in a relativistic quark model

Hadron Physics

Abstract.

We calculate mass spectra of charmed baryons within a relativistically covariant quark model based on the Bethe-Salpeter equation in instantaneous approximation. Interactions are given by a linearly rising three-body confinement potential and a flavor-dependent two-body force derived from QCD instanton effects. This model has already been successfully applied to the calculation of light flavor baryon spectra and is now extended to heavy baryons. Within the same framework we compare the results to those obtained with the more conventional one-gluon exchange potential.

PACS.

11.10.St Bound and unstable states; Bethe-Salpeter equations 12.39.Ki Relativistic quark model 14.20.Lq Charmed baryons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 395 (2001) [arXiv:hep-ph/0103289].CrossRefADSGoogle Scholar
  2. 2.
    U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 447 (2001) [arXiv:hep-ph/0103290].CrossRefADSGoogle Scholar
  3. 3.
    D. Merten, R. Ricken, M. Koll, B. Metsch, H. Petry, Eur. Phys. J. A 13, 477 (2002) [arXiv:hep-ph/0104029].ADSGoogle Scholar
  4. 4.
    G.'t Hooft, Phys. Rev. D 14, 3432 (1976)CrossRefADSGoogle Scholar
  5. 5.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 163, 46 (1980). CrossRefADSGoogle Scholar
  6. 6.
    U. Löring, K. Kretzschmar, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 309 (2001) [arXiv:hep-ph/0103287].CrossRefADSGoogle Scholar
  7. 7.
    T. Murota, Prog. Theor. Phys. 69, 181 (1983).CrossRefADSGoogle Scholar
  8. 8.
    Particle Data Group Collaboration (S. Eidelman), Phys. Lett. B 592, 1 (2004).CrossRefADSGoogle Scholar
  9. 9.
    SELEX Collaboration (M. Mattson), Phys. Rev. Lett. 89, 112001 (2002) [arXiv:hep-ex/0208014].CrossRefADSGoogle Scholar
  10. 10.
    D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, V.A. Saleev, Z. Phys. C 76, 111 (1997) [arXiv:hep-ph/9607314].CrossRefGoogle Scholar
  11. 11.
    D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, Phys. Rev. D 66, 014008 (2002) [arXiv:hep-ph/0201217].MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    J.M. Richard, arXiv:hep-ph/9407224.Google Scholar
  13. 13.
    D.B. Lichtenberg, R. Roncaglia, E. Predazzi, Phys. Rev. D 53, 6678 (1996) [arXiv:hep-ph/9511461].CrossRefADSGoogle Scholar
  14. 14.
    R.M. Woloshyn, Phys. Lett. B 476, 309 (2000) [arXiv:hep-ph/0002088].CrossRefADSGoogle Scholar
  15. 15.
    N. Mathur, R. Lewis, R.M. Woloshyn, Phys. Rev. D 66, 014502 (2002) [arXiv:hep-ph/0203253].CrossRefADSGoogle Scholar
  16. 16.
    S. Migura, D. Merten, B. Metsch, H.R. Petry, this issue, p. 55.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • S. Migura
    • 1
  • D. Merten
    • 1
  • B. Metsch
    • 1
  • H. -R. Petry
    • 1
  1. 1.Helmholtz-Institut für Strahlen- und KernphysikBonnGermany

Personalised recommendations