Nonequilibrium quantum fields from first principles

  • J. Berges
  • S. Borsányi
Quark-Gluon-Plasma Thermalization


Calculations of nonequilibrium processes become increasingly feasable in quantum field theory from first principles. There has been important progress in our analytical understanding based on 2PI generating functionals. In addition, for the first time direct lattice simulations based on stochastic quantization techniques have been achieved. The quantitative descriptions of characteristic far-from-equilibrium time scales and thermal equilibration in quantum field theory point out new phenomena such as prethermalization. They determine the range of validity of standard transport or semi-classical approaches, on which most of our ideas about nonequilibrium dynamics were based so far. These are crucial ingredients to understand important phenomena in high-energy physics related to collision experiments of heavy nuclei, early universe cosmology and complex many-body systems.


11.10.Wx Finite-temperature field theory 12.38.Mh Quark-gluon plasma 05.70.Ln Nonequilibrium and irreversible thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Berges, S. Borsanyi, C. Wetterich, Phys. Rev. Lett. 93, 142002 (2004). %%CITATION = HEP-PH 0403234CrossRefADSGoogle Scholar
  2. 2.
    P. Arnold, J. Lenaghan, G.D. Moore, L.G. Yaffe, Phys. Rev. Lett. 94, 072302 (2005). %%CITATION = NUCL-TH 0409068CrossRefADSGoogle Scholar
  3. 3.
    U.W. Heinz, AIP Conf. Proc. 739, 163 (2005). %%CITATION = NUCL-TH 0407067ADSGoogle Scholar
  4. 4.
    J. Berges, S. Borsanyi, C. Wetterich, Nucl. Phys. B 727, 244 (2005) [arXiv:hep-ph/0505182]CrossRefADSGoogle Scholar
  5. 5.
    S. Mrowczynski, Phys. Lett. B 314, 118 (1993)CrossRefADSGoogle Scholar
  6. 6.
    J. Berges, AIP Conf. Proc. 739, 3 (2005) [arXiv:hep-ph/0409233] and references therein. %%CITATION = HEP-PH 0409233ADSGoogle Scholar
  7. 7.
    J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10, 2428 (1974).CrossRefADSGoogle Scholar
  8. 8.
    J. Berges, I.O. Stamatescu, Phys. Rev. Lett. 95, 202003 (2005). %%CITATION = HEP-LAT 0508030CrossRefADSGoogle Scholar
  9. 9.
    G. Parisi, Y.S. Wu, Sci. Sin. 24, 483 (1981)MathSciNetGoogle Scholar
  10. 10.
    G. Aarts, J. Berges, Phys. Rev. Lett. 88, 041603 (2002). %%CITATION = HEP-PH 0107129CrossRefADSGoogle Scholar
  11. 11.
    J. Berges, S. Borsanyi, I.O. Stamatescu, in preparation.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • J. Berges
    • 1
  • S. Borsányi
    • 1
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations