Advertisement

Transport coefficients of strongly coupled gauge theories: Insights from string theory

  • A. O. StarinetsEmail author
Quark-Gluon-Plasma Thermalization

Abstract.

The transport properties of certain strongly coupled thermal gauge theories can be determined from their effective description in terms of gravity or superstring theory duals. Here we provide a short summary of the results for the shear and bulk viscosity, charge diffusion constant, and the speed of sound in supersymmetric strongly interacting plasmas. We also outline a general algorithm for computing transport coefficients in any gravity dual. The algorithm relates the transport coefficients to the coefficients in the quasinormal spectrum of five-dimensional black holes in asymptotically anti de Sitter space.

PACS.

11.25.Hf Conformal field theory, algebraic structures 11.10.Wx Finite-temperature field theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) . %%CITATION = HEP-TH 9711200zbMATHMathSciNetGoogle Scholar
  2. 2.
    S. Gubser, I. Klebanov, A. Polyakov, Phys. Lett. B 428, 105 (1998). %%CITATION = HEP-TH 9802109MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998). %%CITATION = HEP-TH 9802150zbMATHMathSciNetGoogle Scholar
  4. 4.
    O. Aharony, S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000) . %%CITATION = HEP-TH 9905111MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    I.R. Klebanov, From threebranes to large N gauge theories, arXiv:hep-th/9901018. %%CITATION = HEP-TH 9901018Google Scholar
  6. 6.
    I.R. Klebanov, TASI lectures: Introduction to the AdS/CFT correspondence, arXiv:hep-th/0009139. %%CITATION = HEP-TH 0009139Google Scholar
  7. 7.
    J. Polchinski, QCD from string theory, talk at the 17th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Quark Matter 2004, Oakland, California, USA, 11-17 January 2004, http://qm2004.lbl.gov/.Google Scholar
  8. 8.
    I.R. Klebanov, QCD and string theory, arXiv:hep-ph/0509087. %%CITATION = HEP-PH 0509087Google Scholar
  9. 9.
    L. Girardello, M. Petrini, M. Porrati, A. Zaffaroni, JHEP 9812, 022 (1998). %%CITATION = HEP-TH 9810126MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    J. Polchinski, M.J. Strassler, The string dual of a confining four-dimensional gauge theory, arXiv:hep-th/0003136. %%CITATION = HEP-TH 0003136Google Scholar
  11. 11.
    E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998). %%CITATION = HEP-TH 9803131zbMATHMathSciNetGoogle Scholar
  12. 12.
    S.S. Gubser, I.R. Klebanov, A.W. Peet, Phys. Rev. D 54, 3915 (1996). %%CITATION = HEP-TH 9602135MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    F. Karsch, H.W. Wyld, Phys. Rev. D 35, 2518 (1987). %%CITATION = PHRVA,D35,2518CrossRefADSGoogle Scholar
  14. 14.
    S. Sakai, A. Nakamura, Transport coefficient of gluon plasma from lattice QCD, arXiv:hep-lat/0510100. %%CITATION = HEP-LAT 0510100Google Scholar
  15. 15.
    G. Policastro, D. Son, A. Starinets, Phys. Rev. Lett. 87, 081601 (2001). %%CITATION = HEP-TH 0104066CrossRefADSGoogle Scholar
  16. 16.
    D.T. Son, A.O. Starinets, JHEP 0209, 042 (2002). %%CITATION = HEP-TH 0205051MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    G. Policastro, D.T. Son, A.O. Starinets, JHEP 0209, 043 (2002). %%CITATION = HEP-TH 0205052MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    G. Policastro, D.T. Son, A.O. Starinets, JHEP 0212, 054 (2002). %%CITATION = HEP-TH 0210220CrossRefADSGoogle Scholar
  19. 19.
    A.O. Starinets, Phys. Rev. D 66, 124013 (2002). %%CITATION = HEP-TH 0207133MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    A. Nunez, A.O. Starinets, Phys. Rev. D 67, 124013 (2003). %%CITATION = HEP-TH 0302026MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    P. Kovtun, D.T. Son, A.O. Starinets, JHEP 0310, 064 (2003). %%CITATION = HEP-TH 0309213MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005). %%CITATION = HEP-TH 0405231CrossRefADSGoogle Scholar
  23. 23.
    A. Buchel, J.T. Liu, A.O. Starinets, Nucl. Phys. B 707, 56 (2005). %%CITATION = HEP-TH 0406264MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    A. Parnachev, A. Starinets, JHEP 0510, 027 (2005). %%CITATION = HEP-TH 0506144MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    P.K. Kovtun, A.O. Starinets, Phys. Rev. D 72, 086009 (2005). %%CITATION = HEP-TH 0506184CrossRefADSGoogle Scholar
  26. 26.
    P. Benincasa, A. Buchel, A.O. Starinets, Sound waves in strongly coupled non-conformal gauge theory plasma, arXiv:hep-th/0507026. %%CITATION = HEP-TH 0507026Google Scholar
  27. 27.
    C.P. Herzog, D.T. Son, JHEP 0303, 046 (2003). %%CITATION = HEP-TH 0212072MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    G. 't Hooft, Nucl. Phys. B 72, 461 (1974). %%CITATION = NUPHA,B72,461CrossRefADSGoogle Scholar
  29. 29.
    S. Gubser, I. Klebanov, A. Tseytlin, Nucl. Phys. B 534, 202 (1998). %%CITATION = HEP-TH 9805156zbMATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    P. Arnold, G.D. Moore, L.G. Yaffe, JHEP 0011, 001 (2000) . %%CITATION = HEP-PH 0010177CrossRefADSGoogle Scholar
  31. 31.
    A. Buchel, Phys. Rev. D 72, 106002 (2005). %%CITATION = HEP-TH 0509083MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    A. Starinets, in preparation.Google Scholar
  33. 33.
    A. Buchel, Phys. Lett. B 609, 392 (2005) . %%CITATION = HEP-TH 0408095MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    A. Buchel, J.T. Liu, Phys. Rev. Lett. 93, 090602 (2004). %%CITATION = HEP-TH 0311175CrossRefADSGoogle Scholar
  35. 35.
    D. Teaney, Phys. Rev. C 68, 034913 (2003). %%CITATION = PHRVA,C68,034913CrossRefADSGoogle Scholar
  36. 36.
    E. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004) . %%CITATION = HEP-PH 0312227CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations