Hints of incomplete thermalization in RHIC data

  • N. BorghiniEmail author
Quark-Gluon-Plasma Thermalization


The large elliptic flow observed in Au- Au collisions at RHIC is often put forward as a compelling evidence for the formation of a strongly interacting quark-gluon plasma. The main argument is that the measured elliptic flow is as large as the value given by fluid dynamics models that assume complete thermalization. It is argued that this claim may not be justified, since a detailed examination of experimental data rather suggests that the system created is not fully equilibrated at the time when anisotropic flow develops.


25.75.Ld Collective flow 24.10.Nz Hydrodynamic models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    PHENIX Collaboration (S.S. Adler), Phys. Rev. Lett. 91, 182301 (2003).CrossRefADSGoogle Scholar
  2. 2.
    PHOBOS Collaboration (B.B. Back), Phys. Rev. Lett. 94, 122303 (2005).CrossRefADSGoogle Scholar
  3. 3.
    STAR Collaboration (J. Adams), Phys. Rev. C 72, 014904 (2005).CrossRefADSGoogle Scholar
  4. 4.
    BRAHMS Collaboration (H. Ito), Nucl. Phys. A 774, 519 (2006).CrossRefGoogle Scholar
  5. 5.
    P.F. Kolb, U. Heinz, Quark Gluon Plasma 3, edited by R. Hwa, X.-N. Wang (World Scientific, Singapore, 2004) p. 634.Google Scholar
  6. 6.
    See the various contributions to these proceedings.Google Scholar
  7. 7.
    R.S. Bhalerao, J.-P. Blaizot, N. Borghini, J.-Y. Ollitrault, Phys. Lett. B 627, 49 (2005).CrossRefADSGoogle Scholar
  8. 8.
    E.V. Shuryak, Nucl. Phys. A 750, 64 (2005).CrossRefADSGoogle Scholar
  9. 9.
    N. Borghini, P.M. Dinh, J.Y. Ollitrault, Pramana 60, 753 (2003).Google Scholar
  10. 10.
    J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).CrossRefADSGoogle Scholar
  11. 11.
    L. Bravina, Phys. Lett. B 631, 109 (2005).CrossRefADSGoogle Scholar
  12. 12.
    L.-W. Chen, C.M. Ko, Phys. Lett. B 634, 205 (2006).CrossRefADSGoogle Scholar
  13. 13.
    N. Borghini, J.-Y. Ollitrault, preprint nucl-th/0506045. Google Scholar
  14. 14.
    D. Molnár, P. Huovinen, Phys. Rev. Lett. 94, 012302 (2005).CrossRefADSGoogle Scholar
  15. 15.
    T. Hirano, Phys. Rev. C 65, 011901(R) (2002).CrossRefADSGoogle Scholar
  16. 16.
    U. Heinz, P.F. Kolb, J. Phys. G 30, S1229 (2004).Google Scholar
  17. 17.
    R. Andrade, F. Grassi, preprint nucl-th/0511021.Google Scholar
  18. 18.
    D. Teaney, Phys. Rev. C 68, 034913 (2003).CrossRefADSGoogle Scholar
  19. 19.
    NA49 Collaboration (C. Alt), Phys. Rev. C 68, 034903 (2003).CrossRefADSGoogle Scholar
  20. 20.
    PHENIX Collaboration (H. Masui), Nucl. Phys. A 774, 511 (2006).CrossRefGoogle Scholar
  21. 21.
    N. Borghini, P.M. Dinh, J.-Y. Ollitrault, Phys. Rev. C 64, 054901 (2001).CrossRefADSGoogle Scholar
  22. 22.
    R.S. Bhalerao, N. Borghini, J.-Y. Ollitrault, Nucl. Phys. A 727, 373 (2003).CrossRefADSGoogle Scholar
  23. 23.
    M. Miller, R. Snellings, preprint nucl-ex/0312008.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Theory DivisionCERNGenevaSwitzerland

Personalised recommendations