What can we learn from hydrodynamic analysis at RHIC?

  • T. HiranoEmail author
Quark-Gluon-Plasma Thermalization


We can establish a new picture, the perfect fluid sQGP core and the dissipative hadronic corona, of the space-time evolution of produced matter in relativistic heavy-ion collisions at RHIC. It is also shown that the picture works well also in the forward rapidity region through an analysis based on a new class of the hydro-kinetic model and that this is a manifestation of the rapid increase of the entropy density in the vicinity of QCD critical temperature, namely, deconfinement.


24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes 25.75.-q Relativistic heavy-ion collisions 24.10.Nz Hydrodynamic models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.\_display.asp ?prID=05-38.Google Scholar
  2. 2.
    P. Huovinen, in Quark Gluon Plasma 3, edited by R.C. Hwa, X.N. Wang (World Scientific, 2004) p. 600Google Scholar
  3. 3.
    STAR Collaboration (K.H. Ackermann ), Phys. Rev. Lett. 86, 402 (2001)CrossRefADSGoogle Scholar
  4. 4.
    PHENIX Collaboration (K. Adcox ), Phys. Rev. Lett. 89, 212301 (2002)CrossRefADSGoogle Scholar
  5. 5.
    PHOBOS Collaboration (B.B. Back ), Phys. Rev. Lett. 89, 222301 (2002)CrossRefADSGoogle Scholar
  6. 6.
    BRAHMS Collaboration (H. Ito), talk given at the 18th International Conference on Nucleus-Nucleus Collisions, Quark Matter 2005 (QM 2005), Budapest, Hungary, 4-9 August 2005. Google Scholar
  7. 7.
    C. Nonaka, S. Bass, nucl-th/0510038. (This paper employs different hydrodynamic and hadronic cascade codes from the present paper.)Google Scholar
  8. 8.
    See, for example, F. Karsch, Lect. Notes Phys. 583, 209 (2002).CrossRefGoogle Scholar
  9. 9.
    PHENIX Collaboration (K. Adcox ), nucl-ex/0410003. %%CITATION = NUCL-EX 0410003Google Scholar
  10. 10.
    T. Hirano, M. Gyulassy, nucl-th/0506049.Google Scholar
  11. 11.
    T. Hirano, K. Tsuda, Phys. Rev. C 66, 054905 (2002). %%CITATION = NUCL-TH 0205043CrossRefADSGoogle Scholar
  12. 12.
    T. Hirano, Y. Nara, Nucl. Phys. A 743, 305 (2004). %%CITATION = NUCL-TH 0404039CrossRefADSGoogle Scholar
  13. 13.
    Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, Phys. Rev. C 61, 024901 (2000).CrossRefADSGoogle Scholar
  14. 14.
    T. Hirano, Phys. Rev. C 65, 011901 (2002)CrossRefADSGoogle Scholar
  15. 15.
    T. Hirano, Phys. Rev. Lett. 86, 2754 (2001). %%CITATION = NUCL-TH 0004029CrossRefADSGoogle Scholar
  16. 16.
    Recently, the effect of event-by-event fluctuation in the initial conditions is found to reduce $v_2$ in forward and backward rapidity regions. It is concluded that a lack of thermalisation is not needed when fluctuation is taken into account: R. Andrade, F. Grassi, Y. Hama, T. Kodama, O. Socolowski jr., B. Tavares, nucl-th/0511021.Google Scholar
  17. 17.
    T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, nucl-th/0511046.Google Scholar
  18. 18.
    One can find many papers in these proceedings for recent progress to understand non-equilibrium aspects of gauge theories and an initial prethermalisation stage in relativistic heavy-ion collisions.Google Scholar
  19. 19.
    P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsColumbia UniversityNew YorkUSA

Personalised recommendations