Advertisement

Strange-quark collectivity of the φ-meson at RHIC

  • J. H. Chen
  • Y. G. MaEmail author
  • G. L. Ma
  • H. Z. Huang
  • X. Z. Cai
  • Z. J. He
  • J. L. Long
  • W. Q. Shen
  • J. X. Zuo
Quark-Gluon-Plasma Thermalization

Abstract.

Based on A Multi-Phase Transport (AMPT) model, the elliptic flow v2 of φ-mesons which is reconstructed from K + K - at the Relativistic Heavy-Ion Collider (RHIC) energy has been studied. The results show that the reconstructed v2 of the φ-meson can keep the earlier information before φ decays and it seems to obey the number of constituent-quark scaling as other mesons and baryons. This result indicates that the φ v2 mostly reflects the parton level collectivity developed during the early stage of the collisions and the strange and light up/down quarks have similar collectivity properties before the hadronization.

PACS.

24.10.Cn Many-body theory 24.10.Pa Thermal and statistical models 25.75.Dw Particle and resonance production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ollitrault, Phys. Rev. D 46, 229 (1992).CrossRefADSGoogle Scholar
  2. 2.
    H. Sorge, Phys. Lett. B 402, 251 (1997)CrossRefADSGoogle Scholar
  3. 3.
    P. Danielewicz, Phys. Rev. Lett. 81, 2438 (1998).CrossRefADSGoogle Scholar
  4. 4.
    P.F. Kolb, Phys. Lett. B 500, 232 (2001).CrossRefADSGoogle Scholar
  5. 5.
    B. Zhang, M. Gyulassy, Che-Ming Ko, Phys. Lett. B 455, 45 (1999).CrossRefADSGoogle Scholar
  6. 6.
    STAR Collaboration (J. Adams), Phys. Rev. Lett. 92, 052302 (2004).CrossRefADSGoogle Scholar
  7. 7.
    PHENIX Collaboration (S.S. Adler), Phys. Rev. Lett. 91, 182301 (2003).CrossRefADSGoogle Scholar
  8. 8.
    J. Rafelski, B. Müller, Phys. Lett. B 111, 101 (1982)Google Scholar
  9. 9.
    A. Shor, Phys. Rev. Lett. 54 1122 (1985).Google Scholar
  10. 10.
    STAR Collaboration (J. Adams), Phys. Lett. B 612, 181 (2005)CrossRefADSGoogle Scholar
  11. 11.
    PHENIX Collaboration (S.S. Adler), Phys. Rev. C 72, 014903 (2005).CrossRefADSGoogle Scholar
  12. 12.
    Z.W. Lin, Phys. Rev. C 72, 064901 (2005).CrossRefADSGoogle Scholar
  13. 13.
    B. Zhang, Phys. Rev. C 61 067901 (2000)Google Scholar
  14. 14.
    B. Andersson, Phys. Rep. 97, 31 (1983).CrossRefADSGoogle Scholar
  15. 15.
    Z.W. Lin, C.M. Ko, Phys. Rev. C 65, 034904 (2002)CrossRefADSGoogle Scholar
  16. 16.
    T. Sjostrand, arXiv:hep-ph/9508391.Google Scholar
  17. 17.
    S. Pal, C.M. Ko, Z.W. Lin, Nucl. Phys. A 707, 525 (2002).CrossRefADSGoogle Scholar
  18. 18.
    D. L'hote, Nucl. Instrum. Methods Phys. Res. A 337, 544 (1994).CrossRefADSGoogle Scholar
  19. 19.
    P. Danielewicz, G. Odyniec, Phys. Lett. B 157, 146 (1985).CrossRefADSGoogle Scholar
  20. 20.
    P. Huovinen, Phys. Lett. B 503, 58 (2001). CrossRefADSGoogle Scholar
  21. 21.
    Z.W. Lin, C.M. Ko, Phys. Rev. Lett. 89, 202302 (2002)CrossRefADSGoogle Scholar
  22. 22.
    R.J. Fries , Phys. Rev. Lett. 90, 202303 (2003).CrossRefADSGoogle Scholar
  23. 23.
    B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • J. H. Chen
    • 1
    • 2
  • Y. G. Ma
    • 1
    Email author
  • G. L. Ma
    • 1
    • 2
  • H. Z. Huang
    • 1
    • 3
  • X. Z. Cai
    • 1
  • Z. J. He
    • 1
  • J. L. Long
    • 1
  • W. Q. Shen
    • 1
  • J. X. Zuo
    • 1
    • 2
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiPRC
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingPRC
  3. 3.University of CaliforniaLos AngelesUSA

Personalised recommendations