The European Physical Journal A - Hadrons and Nuclei

, Volume 27, Issue 2, pp 129–136

Beta decay of the proton-rich nuclei 102Sn and 104Sn

  • M. Karny
  • L. Batist
  • A. Banu
  • F. Becker
  • A. Blazhev
  • B. A. Brown
  • W. Brüchle
  • J. Döring
  • T. Faestermann
  • M. Górska
  • H. Grawe
  • Z. Janas
  • A. Jungclaus
  • M. Kavatsyuk
  • O. Kavatsyuk
  • R. Kirchner
  • M. La Commara
  • S. Mandal
  • C. Mazzocchi
  • K. Miernik
  • I. Mukha
  • S. Muralithar
  • C. Plettner
  • A. Płochocki
  • E. Roeckl
  • M. Romoli
  • K. Rykaczewski
  • M. Schädel
  • K. Schmidt
  • R. Schwengner
  • J. Żylicz
Nuclear Structure and Reactions

Abstract.

The β decays of 102Sn and 104Sn were studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). For 104Sn, with three new β-delayed γ-rays identified, the total Gamow-Teller strength (BGT) value of 2.7(3) was obtained. For 102Sn, the γ-γ coincidence data were collected for the first time, allowing us to considerably extend the decay scheme. This scheme was used to unfold the TAS data and to deduce a BGT value of 4.2(8) for this decay. This result is compared to shell model predictions, yielding a hindrance factor of 3.6(7) in agreement with those obtained previously for 98Cd and 100In. Together with the latter two, 102Sn completes the triplet of Z ⩽ 50, N ≥ 50 nuclei with two proton holes, one proton hole and one neutron particle, and two neutron particles with respect to the doubly magic 100Sn core.

PACS.

21.10.-k Properties of nuclei; nuclear energy levels 23.40.-s Beta decay; double β decay; electron and muon capture 23.20.Lv Gamma transitions and level energies 27.60.+j 90≤A≤149 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Rykaczewski, Z. Phys. A 322, 263 (1985).CrossRefGoogle Scholar
  2. 2.
    K. Rykaczewski, Z. Phys. A 332, 176 (1989).Google Scholar
  3. 3.
    H. Keller, Z. Phys. A 339, 355 (1991).CrossRefGoogle Scholar
  4. 4.
    A. Płochocki, Z. Phys. A 342, 43 (1992).CrossRefGoogle Scholar
  5. 5.
    L. Batist, Z. Phys. A 351, 149 (1995).CrossRefGoogle Scholar
  6. 6.
    M. Karny, Nucl. Phys. A 640, 3 (1998).CrossRefADSGoogle Scholar
  7. 7.
    Z. Hu, Phys. Rev. C 60, 024315 (1999).CrossRefADSGoogle Scholar
  8. 8.
    Z. Hu, Phys. Rev. C 62, 064315 (2000).CrossRefADSGoogle Scholar
  9. 9.
    M. Karny, Nucl. Phys. A 690, 367 (2001).CrossRefADSGoogle Scholar
  10. 10.
    C. Plettner, Phys. Rev. C 66, 044319 (2002).CrossRefADSGoogle Scholar
  11. 11.
    M. Gierlik, Nucl. Phys. A 724, 313 (2003).CrossRefADSGoogle Scholar
  12. 12.
    M. Kavatsyuk, Eur. Phys. J. A 25, s01, 139 (2005).Google Scholar
  13. 13.
    O. Kavatsyuk, Eur. Phys. J. A 25 211 (2005).Google Scholar
  14. 14.
    M. Karny, Eur. Phys. J. A 25, s01, 135 (2005).Google Scholar
  15. 15.
    R. Kirchner, Nucl. Instrum. Methods A 234, 224 (1985).CrossRefADSGoogle Scholar
  16. 16.
    R. Kirchner, Nucl. Instrum. Methods B 204, 179 (2003).CrossRefADSGoogle Scholar
  17. 17.
    I. Mukha, Phys. Rev. C 70, 044311 (2004).CrossRefADSGoogle Scholar
  18. 18.
    M. Karny, Nucl. Instrum. Methods B 126, (1997) 411.Google Scholar
  19. 19.
    D. Cano-Ott, Nucl. Instrum. Methods A 430, (1999) 333.Google Scholar
  20. 20.
    D. Cano-Ott, PhD Thesis, University of Valencia (2000).Google Scholar
  21. 21.
    E. Nacher, Phys. Rev. Lett. 92, 232501 (2004).CrossRefADSGoogle Scholar
  22. 22.
    J. Blachot, Nucl. Data Sheets 64, 1 (1991).Google Scholar
  23. 23.
    R. Barden, Z. Phys. A 329, 319 (1988).Google Scholar
  24. 24.
    J. Szerypo, Nucl. Phys. A 507, 357 (1990).CrossRefADSGoogle Scholar
  25. 25.
    B.S. Dzelepov, Beta Process (Nauka, Leningrad, 1972).Google Scholar
  26. 26.
    G. Audi, Nucl. Phys. A 729, 337 (2003).CrossRefADSGoogle Scholar
  27. 27.
    A. Stolz, PhD Thesis, Universität München (2001).Google Scholar
  28. 28.
    A. Stolz, AIP Conf. Proc. 638, 259 (2002).CrossRefADSGoogle Scholar
  29. 29.
    B. Singh, Nucl. Data Sheets 81, 1 (1997).CrossRefMATHGoogle Scholar
  30. 30.
    A. Płochocki, in preparation.Google Scholar
  31. 31.
    D. Sohler, Nucl. Phys. A 708, 181 (2002).CrossRefADSGoogle Scholar
  32. 32.
    B.A. Brown, K. Rykaczewski, Phys. Rev. C 50, R2270 (1994).Google Scholar
  33. 33.
    O. Kavatsyuk, 2005 GSI Annual ReportGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • M. Karny
    • 1
  • L. Batist
    • 2
  • A. Banu
    • 3
  • F. Becker
    • 3
  • A. Blazhev
    • 3
    • 4
  • B. A. Brown
    • 5
  • W. Brüchle
    • 3
  • J. Döring
    • 3
  • T. Faestermann
    • 6
  • M. Górska
    • 3
  • H. Grawe
    • 3
  • Z. Janas
    • 1
  • A. Jungclaus
    • 7
  • M. Kavatsyuk
    • 3
    • 8
  • O. Kavatsyuk
    • 3
    • 8
  • R. Kirchner
    • 3
  • M. La Commara
    • 9
  • S. Mandal
    • 3
  • C. Mazzocchi
    • 3
  • K. Miernik
    • 1
  • I. Mukha
    • 3
  • S. Muralithar
    • 3
    • 10
  • C. Plettner
    • 3
  • A. Płochocki
    • 1
  • E. Roeckl
    • 3
  • M. Romoli
    • 9
  • K. Rykaczewski
    • 11
  • M. Schädel
    • 3
  • K. Schmidt
    • 12
  • R. Schwengner
    • 13
  • J. Żylicz
    • 1
  1. 1.Institute of Experimental PhysicsUniversity of WarsawPoland
  2. 2.St. Petersburg Nuclear Physics InstituteRussia
  3. 3.Gesellschaft für SchwerionenforschungDarmstadtGermany
  4. 4.University of SofiaBulgaria
  5. 5.NSCL, Department of Physics and AstronomyMichigan State UniversityUSA
  6. 6.Technische Universität MünchenGermany
  7. 7.Departamento de Fisica TeóricaUniversidad Autonoma de MadridSpain
  8. 8.Taras Shevchenko Kiev National UniversityUkraine
  9. 9.Dipartimento Scienze FisicheUniversità “Federico II” and INFN NapoliItaly
  10. 10.Nuclear Science CenterNew DelhiIndia
  11. 11.Oak Ridge National LaboratoryUSA
  12. 12.Continental Teves AG & Co.Frankfurt am MainGermany
  13. 13.Institut für Kern- und HadronenphysikForschungszentrum RossendorfDresdenGermany

Personalised recommendations