Alpha-induced fragmentation of 28Si in a statistical model

  • M. S. SabraEmail author
  • Z. F. Shehadeh
  • F. Bary Malik
Nuclear Structure and Reactions


Within the context of a statistical model, that incorporates final-state interaction between a pair of fragments, we have calculated the energy spectra associated with the production of different isobaric pairs as a function of their lab kinetic energy and isobaric and elemental distributions of nuclei produced in the

4He$ + $28Si

reaction at cm incident energies of 102.7, 173.7, 300, 500, and 1000MeV. Double differential cross-section of isobars 16, 20, and 24 as a function of their lab kinetic energies at 30° and the same for isobar 24 at 10°, 30°, 60°, and 90° have been calculated at cm incident energies of 102.7 and 173.7MeV and compared with the data of Woo et al. Calculated yields follow the trend of the data at each angle, and calculated angular distributions also reproduce the general trend of the observed ones. A key feature of the model is that it allows for fragments to be emitted in ground states as well as in excited states that are allowed by the conservation of energy. The analysis establishes that the fragments are emitted in excited state. The excitation energies for A = 24 and 16 are deduced from the data. The observed angular distributions for A = 7, 12, 16, 20, 24, and 28 are well accounted for assuming them to be emitted in excited states. The relative production probabilities for different elements and isobars are energy dependent. The yields for unstable elements, 5Li, 8Be, and 26Al, are found to be significant. The relative fragmentation probabilities of all allowed isotopic pairs have been presented.


24.60.Dr Statistical compound-nucleus reactions 25.55.-e 3H-, 3He-, and 4He-induced reactions 25.60.Gc Breakup and momentum distributions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.W. Wilson, L.W. Townsend, W. Schimmerling, G.S. Khandelwal, F. Khan, J.E. Nealy, F.A. Cucinotta, L.C. Simonsen, J.L. Shinn, J.W. Norbury, Transport Methods and Interactions for Space Radiations, NASA Ref. Publication No. 1257 (1991).Google Scholar
  2. 2.
    L.H. Ahrens, Origin and Distribution of the Elements (Pergamon Press, Oxford, 1968).Google Scholar
  3. 3.
    B. Compani-Tabrizi, F.B. Malik, J. Phys. G 8, 1447 (1982).CrossRefADSGoogle Scholar
  4. 4.
    L.W. Woo, K. Kwiatkowski, W.G. Wilson, V.E. Viola, Phys. Rev. C 47, 267 (1993).CrossRefADSGoogle Scholar
  5. 5.
    V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940). CrossRefADSGoogle Scholar
  6. 6.
    T.D. Newton, Proceedings of the Symposium on the Physics of Fission (1956) Chalk Revier, Report CRO-642-A: Report AECL-329.Google Scholar
  7. 7.
    T. Ericson, Adv. Phys. 9, 425 (1960).ADSGoogle Scholar
  8. 8.
    E. Gadioli, L. Zetta, Phys. Rev. 167, 1016 (1968).CrossRefADSGoogle Scholar
  9. 9.
    A.G.W. Cameron, Can. J. Phys. 36, 1040 (1958).ADSGoogle Scholar
  10. 10.
    B. Block, J.W. Clark, M.D. High, R. Malmin, F.B. Malik, Ann. Phys. (N.Y.) 62, 464 (1971).CrossRefGoogle Scholar
  11. 11.
    I. Reichstein, F.B. Malik, Ann. Phys. (N.Y.) 98, 322 (1976).CrossRefGoogle Scholar
  12. 12.
    I. Reichstein, F.B. Malik, Super-Heavy Elements, edited by M.A.K. Lodhi (Gordon and Breach, 1978).Google Scholar
  13. 13.
    F.B. Malik, I. Reichstein, Clustering Phenomena in Atoms and Nuclei, edited by M.A. Brenner, T. Lonnroth, F.B. Malik (Springer Verlag, 1992).Google Scholar
  14. 14.
    W. Scheid, R. Ligensa, W. Greiner, Phys. Rev. Lett. 21, 1479 (1968).CrossRefADSGoogle Scholar
  15. 15.
    M.A. Alam, F.B. Malik, Clustering Phenomena in Atoms and Nuclei, edited by M.A. Brenner, T. Lonnroth, F.B. Malik (Springer Verlag, 1992).Google Scholar
  16. 16.
    L. Rickertsen, B. Block, J. Clark, F.B. Malik, Phys. Rev. Lett. 22, 951 (1969).CrossRefADSGoogle Scholar
  17. 17.
    Q. Haider, F.B. Malik, J. Phys. G 7, 1661 (1981).CrossRefADSGoogle Scholar
  18. 18.
    P. Manngard, M. Brenner, M. Alam, I. Reichstein, F.B. Malik, Nucl. Phys. A 504, 130 (1989).CrossRefADSGoogle Scholar
  19. 19.
    P. Manngard, M. Brenner, I. Reichstein, F.B. Malik, Proceedings of the 5th International Conference on Nuclear Reaction Mechanisms, edited by E. Gadioli (University of Milano Press, 1989).Google Scholar
  20. 20.
    Z.F. Shehadeh, PhD Dissertation, Southern Illinois University at Carbondale (1994).Google Scholar
  21. 21.
    M.A. Hooshyar, I. Reichstein, F.B. Malik, Nuclear Fission and Cluster Radioactivity (Spring-Verlag, 2005) Chapt. 6.Google Scholar
  22. 22.
    J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (John Wiley and Sons, New York, 1952).Google Scholar
  23. 23.
    R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, Nucl. Instrum. Methods B 155, 349 (1999).CrossRefADSGoogle Scholar
  24. 24.
    R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, NASA TP, 209726 (1999).Google Scholar
  25. 25.
    R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instrum. Methods B 129, 11 (1997).CrossRefADSGoogle Scholar
  26. 26.
    R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, NASA TP, 3621 (1997).Google Scholar
  27. 27.
    R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, Nucl. Instrum. Methods B 117, 347 (1996).CrossRefADSGoogle Scholar
  28. 28.
    W.R Webber, J.C. Kish, D.A. Schrier, Phys. Rev. C 41, 520 (1990).CrossRefADSGoogle Scholar
  29. 29.
    S. Kox, A. Gamp, R. Cherkaoui, A.J. Cole, N. Longequeue, J. Menet, C. Perrin, J. Viano, Nucl. Phys. A 420, 162 (1984).CrossRefADSGoogle Scholar
  30. 30.
    P.J. Karol, Phys. Rev. C 11, 1203 (1975).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • M. S. Sabra
    • 1
    Email author
  • Z. F. Shehadeh
    • 2
    • 3
  • F. Bary Malik
    • 1
    • 4
  1. 1.Physics DepartmentSouthern Illinois UniversityCarbondaleUSA
  2. 2.Applied Science UniversityAmmanJordan
  3. 3.Taif Teachers CollegeTaifSaudi Arabia
  4. 4.Physics DepartmentWashington UniversityUSA

Personalised recommendations