Advertisement

Casimir scaling, glueballs, and hybrid gluelumps

  • V. Mathieu
  • C. SemayEmail author
  • F. Brau
Hadron Physics

Abstract.

Assuming that the Casimir scaling hypothesis is well verified in QCD, masses of glueballs and hybrid gluelumps (gluon attached to a point-like c¯ pair) are computed within the framework of the rotating string formalism. In our model, two gluons are attached by an adjoint string in a glueball, while the gluon and the colour octet c¯ pair are attached by two fundamental strings in a hybrid gluelump. Masses for such exotic hadrons are computed with very few free parameters. These predictions can serve as a guide for experimental searches. In particular, the ground-state glueballs lie on a Regge trajectory and the lightest 2++ state has a mass compatible with some experimental candidates.

PACS.

12.39.Mk Glueball and nonstandard multi-quark/gluon states 12.39.Ki Relativistic quark model 12.39.Pn Potential model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Deldar, Phys. Rev. D 62, 034509 (2000) (hep-lat/9911008).CrossRefADSGoogle Scholar
  2. 2.
    G.S. Bali, Phys. Rev. D 62, 114503 (2000) (hep-lat/0006022).CrossRefADSGoogle Scholar
  3. 3.
    T.H. Hanson, Phys. Lett. B 166, 343 (1986).CrossRefADSGoogle Scholar
  4. 4.
    C. Semay, Eur. Phys. J. A 22, 353 (2004) (hep-ph/0409105).CrossRefADSGoogle Scholar
  5. 5.
    J.M. Cornwall, A. Soni, Phys. Lett. B 120, 431 (1983).CrossRefADSGoogle Scholar
  6. 6.
    A. Szczepaniak, E.S. Swanson, C.-R. Ji, S.R. Cotanch, Phys. Rev. Lett. 76, 2011 (1996) (hep-ph/9511422).CrossRefADSGoogle Scholar
  7. 7.
    C.J. Morningstar, M. Peardon, Phys. Rev. D 60, 034509 (1999).CrossRefADSGoogle Scholar
  8. 8.
    F. Brau, C. Semay, Phys. Rev. D 70, 014017 (2004) (hep-ph/0412173).CrossRefADSGoogle Scholar
  9. 9.
    B.S. Zou, Nucl. Phys. A 655, c41 (1999).Google Scholar
  10. 10.
    D.V. Bugg, M. Peardon, B.S. Zou, Phys. Lett. B 486, 49 (2000).CrossRefADSGoogle Scholar
  11. 11.
    Yu.A. Simonov, Nucl. Phys. B 592, 350 (2001) (hep-ph/0003114).CrossRefADSGoogle Scholar
  12. 12.
    N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005) (hep-ph/0410047).CrossRefADSGoogle Scholar
  13. 13.
    E. Abreu, P. Bicudo, hep-ph/0508281.Google Scholar
  14. 14.
    A.Yu. Dubin, A.B. Kaidalov, Yu.A. Simonov, Phys. At. Nucl. 56, 1745 (1993) (Yad. Fiz. 56, 213 (1993)) (hep-ph/9311344).Google Scholar
  15. 15.
    E.L. Gubankova, A.Yu. Dubin, Phys. Lett. B 334, 180 (1994) (hep-ph/9408278).CrossRefADSGoogle Scholar
  16. 16.
    V.L. Morgunov, A.V. Nefediev, Yu.A. Simonov, Phys. Lett. B 459, 653 (1999) (hep-ph/9906318).CrossRefADSGoogle Scholar
  17. 17.
    D. LaCourse, M.G. Olsson, Phys. Rev. D 39, 2751 (1989).CrossRefADSGoogle Scholar
  18. 18.
    T.J. Allen, M.G. Olsson, Phys. Rev. D 68, 054022 (2003) (hep-ph/0306128).CrossRefADSGoogle Scholar
  19. 19.
    C. Semay, B. Silvestre-Brac, I.M. Narodetskii, Phys. Rev. D 69, 014003 (2004) (hep-ph/0309256).CrossRefADSGoogle Scholar
  20. 20.
    F. Buisseret, C. Semay, Phys. Rev. D 70, 077501 (2004) (hep-ph/0406216).CrossRefADSGoogle Scholar
  21. 21.
    F. Buisseret, C. Semay, Phys. Rev. E 71, 026705 (2005) (hep-ph/0409033).CrossRefADSGoogle Scholar
  22. 22.
    A.M. Badalian, B.L.G. Bakker, Phys. Rev. D 66, 034025 (2002) (hep-ph/0202246).CrossRefADSGoogle Scholar
  23. 23.
    F. Buisseret, C. Semay, Phys. Rev. D 71, 034019 (2005) (hep-ph/0412361).CrossRefADSGoogle Scholar
  24. 24.
    C. Semay, D. Baye, M. Hesse, B. Silvestre-Brac, Phys. Rev. E 64, 016703 (2001).CrossRefADSGoogle Scholar
  25. 25.
    Yu.A. Simonov, Phys. Lett. B 515, 137 (2001) (hep-ph/0105141). CrossRefADSzbMATHGoogle Scholar
  26. 26.
    A. Di Giacomo, H. Panagopoulos, Phys. Lett. B 285, 133 (1992).CrossRefADSGoogle Scholar
  27. 27.
    A. Di Giacomo, Yu.A. Simonov, Phys. Lett. B 595, 368 (2004) (hep-ph/0404044).CrossRefADSGoogle Scholar
  28. 28.
    A.B. Kaidalov, Yu.A. Simonov, Phys. At. Nucl. 63, 1428 (2000) (Yad. Fiz. 63, 1428 (2000)) (hep-ph/9911291).CrossRefGoogle Scholar
  29. 29.
    Yu.A. Simonov, hep-ph/0501182.Google Scholar
  30. 30.
    W.H. Blask , Z. Phys. A 337, 327 (1990).Google Scholar
  31. 31.
    F. Brau, C. Semay, Phys. Rev. D 58, 034015 (1998).CrossRefADSGoogle Scholar
  32. 32.
    W. Lucha, F.F. Schöberl, Phys. Rev. Lett. 64, 2733 (1990).CrossRefADSzbMATHMathSciNetGoogle Scholar
  33. 33.
    Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).CrossRefADSGoogle Scholar
  34. 34.
    A. Donnachie, P.V. Landshoff, Phys. Lett. B 437, 408 (1998) (hep-ph/9806344).CrossRefADSGoogle Scholar
  35. 35.
    B. Silvestre-Brac, C. Semay, I.M. Narodetskii, A.I. Veselov, Eur. Phys. J. C 32, 385 (2004) (hep-ph/0309247).CrossRefADSGoogle Scholar
  36. 36.
    F.J. Llanes-Estrada, S.R. Cotanch, Phys. Lett. B 504, 15 (2001) (hep-ph/0008337).CrossRefADSGoogle Scholar
  37. 37.
    M. Foster, C. Michael, Phys. Rev. D 59, 094509 (1999) (hep-lat/9811010).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Groupe de Physique Nucléaire ThéoriqueUniversité de Mons-Hainaut, Académie universitaire Wallonie-BruxellesMonsBelgium
  2. 2.CWIAmsterdamThe Netherlands

Personalised recommendations