Advertisement

A theoretical description of energy spectra and two-neutron separation energies for neutron-rich zirconium isotopes

  • J. E. Garcıa-Ramos
  • K. Heyde
  • R. Fossion
  • V. Hellemans
  • S. De Baerdemacker
Original Article

Abstract.

Very recently the atomic masses of neutron-rich Zr isotopes, from 96Zr to 104Zr, have been measured with high precision. Using a schematic Interacting Boson Model (IBM) Hamiltonian, the evolution from spherical to deformed shapes along the chain of Zr isotopes, describing at the same time the excitation energies as well as the two-neutron separation energies, can be rather well reproduced. The interplay between phase transitions and configuration mixing of intruder excitations in this mass region is succinctly addressed.

PACS.

21.60.Fw Models based on group theory 27.70.+q 150 ⩽ A ⩽ 189 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Fossion, C. De Coster, J.E. García-Ramos, T. Werner, K. Heyde, Nucl. Phys. A 697, 703 (2002).Google Scholar
  2. 2.
    S. Rinta-Antila, Phys. Rev. C 70, 011301(R) (2004).Google Scholar
  3. 3.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).Google Scholar
  4. 4.
    U. Hager, private communication.Google Scholar
  5. 5.
    P. Möller, J.R. Nix, At. Data Nucl. Data Tables 26, 165 (1981).Google Scholar
  6. 6.
    K. Heyde, J. Moreau, M. Waroquier, Phys. Rev. C 29, 1859 (1984).Google Scholar
  7. 7.
    J.L. Wood, E.F. Zganjar, C. De Coster, K. Heyde, Nucl. Phys. A 651, 323 (1999).Google Scholar
  8. 8.
    K. Heyde, J. Jolie, J. Moreau, J. Ryckebusch, M. Waroquier, P. Van Duppen, M. Huyse, J.L. Wood, Nucl. Phys. A 466, 189 (1987).Google Scholar
  9. 9.
    E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 77, 427 (2005).Google Scholar
  10. 10.
    C. Fransen, Phys. Rev. C 71, 054304 (2005).Google Scholar
  11. 11.
    F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).Google Scholar
  12. 12.
    K. Heyde, Basic Ideas and Concepts in Nuclear Physics Ser. Fundam. Appl. Nucl. Phys., 3rd edition (Institute of Physics, Bristol, Philadelphia, 2004).Google Scholar
  13. 13.
    E.A. McCutchan, R.F. Casten, N.V. Zamfir, Phys. Rev. C 71, 061301 (2005).Google Scholar
  14. 14.
    O. Scholten, F. Iachello, A. Arima, Ann. Phys. (N.Y.) 115, 325 (1978).Google Scholar
  15. 15.
    O. Scholten, PhD Thesis, University of Groningen (1980).Google Scholar
  16. 16.
    J. Stachel, P. Van Isacker, K. Heyde, Phys. Rev. C 25, 650 (1982).Google Scholar
  17. 17.
    R.F. Casten, J.A. Cizewki, Nucl. Phys. 309, 477 (1978).Google Scholar
  18. 18.
    W.-T. Chou, N.V. Zamfir, R.F. Casten, Phys. Rev. C 56, 829 (1997). Google Scholar
  19. 19.
    R.F. Casten, D.D. Warner, Rev. Mod. Phys. 60, 389 (1988).Google Scholar
  20. 20.
    V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967).Google Scholar
  21. 21.
    V.M. Strutinsky, Nucl. Phys. A 122, 1 (1968).Google Scholar
  22. 22.
    See page 12 of ref. Iach87.Google Scholar
  23. 23.
    J.K. Tuli, Nucl. Data Sheets 66, 1 (1992).Google Scholar
  24. 24.
    M.R. Bhat, Nucl. Data Sheets 82, 547 (1997).Google Scholar
  25. 25.
    B. Singh, Z. Hu, Nucl. Data Sheets 98, 547 (2003).Google Scholar
  26. 26.
    B. Singh, Nucl. Data Sheets 81, 1 (1997).Google Scholar
  27. 27.
    D. De Frenne, E. Jacobs, Nucl. Data Sheets 83, 535 (1998).Google Scholar
  28. 28.
    J. Blachot, Nucl. Data Sheets 64, 1 (1991).Google Scholar
  29. 29.
    H. Mach, E.K. Warburton, W. Krips, R.L. Gill, M. Moszynski, Phys. Rev. C 42, 568 (1990).Google Scholar
  30. 30.
    D. Pantelica, Phys. Rev. C 72, 024304 (2005).Google Scholar
  31. 31.
    K. Heyde, R.A. Meyer, Phys. Rev. C 37, 2170 (1988).Google Scholar
  32. 32.
    C. De Coster, K. Heyde, B. Decroix, J.L. Wood, J. Jolie, H. Lehmann, Nucl. Phys. A 651, 31 (1999).Google Scholar
  33. 33.
    G. Lhersonneau, Phys. Rev. C 49, 1379 (1994).Google Scholar
  34. 34.
    C.Y. Wu, Phys. Rev. C 70, 064312 (2004).Google Scholar
  35. 35.
    A.E.L. Dieperink, O. Scholten, F. Iachello, Phys. Rev. Lett. 44, 1747 (1980).Google Scholar
  36. 36.
    J.N. Ginocchio, M.W. Kirson, Nucl. Phys. A 350, 31 (1980).Google Scholar
  37. 37.
    F. Iachello, Phys. Rev. Lett. 85, 3580 (2000)Google Scholar
  38. 38.
    M. Hemalatha, A. Bhagwat, A. Shirivastava, S. Kailas, Y.K. Gambhir, Phys. Rev. C 70, 044320 (2004).Google Scholar
  39. 39.
    A. Blazkiewicz, V.E. Oberacker, A.S. Umar, M. Stoitsov, Phys. Rev. C 70, 054321 (2005).Google Scholar
  40. 40.
    K. Heyde, J. Jolie, R. Fossion, S. De Baerdemacker, V. Hellemans, Phys. Rev. C 69, 054303 (2004).Google Scholar
  41. 41.
    P. Federman, S. Pittel, Phys. Lett. B 69, 385 (1977).Google Scholar
  42. 42.
    P. Federman, S. Pittel, Phys. Rev. C 20, 820 (1979).Google Scholar
  43. 43.
    A. Etchegoyan, Phys. Rev. C 39, 1130 (1989).Google Scholar
  44. 44.
    E. Kirchuck, Phys. Rev. C 47, 567 (1993).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • J. E. Garcıa-Ramos
    • 1
  • K. Heyde
    • 2
  • R. Fossion
    • 2
  • V. Hellemans
    • 2
  • S. De Baerdemacker
    • 2
  1. 1.Departamento de Fısica AplicadaUniversidad de HuelvaHuelvaSpain
  2. 2.Institute for Theoretical PhysicsVakgroep Subatomaire en StralingsfysicaGentBelgium

Personalised recommendations