Electromagnetic form factors of the nucleon in chiral perturbation theory including vector mesons

  • M. R. Schindler
  • J. Gegelia
  • S. SchererEmail author
Original Article


We calculate the electromagnetic form factors of the nucleon up to fourth order in manifestly Lorentz-invariant chiral perturbation theory with vector mesons as explicit degrees of freedom. A systematic power counting for the renormalized diagrams is implemented using both the extended on-mass-shell renormalization scheme and the reformulated version of infrared regularization. We analyze the electric and magnetic Sachs form factors, GE and GM, and compare our results with the existing data. The inclusion of vector mesons results in a considerably improved description of the form factors. We observe that the most dominant contributions come from tree-level diagrams, while loop corrections with internal vector meson lines are small.


12.39.Fe Chiral Lagrangians 13.40.Gp Electromagnetic form factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.W. Mcallister, R. Hofstadter, Phys. Rev. 102, 851 (1956).CrossRefADSGoogle Scholar
  2. 2.
    F.J. Ernst, R.G. Sachs, K.C. Wali, Phys. Rev. 119, 1105 (1960).CrossRefADSGoogle Scholar
  3. 3.
    P.A.M. Guichon, M. Vanderhaeghen, Phys. Rev. Lett. 91, 142303 (2003).CrossRefADSGoogle Scholar
  4. 4.
    J.J. Kelly, Phys. Rev. C 66, 065203 (2002).CrossRefADSGoogle Scholar
  5. 5.
    H. Gao, Int. J. Mod. Phys. E 12, 1Google Scholar
  6. 6.
    J. Friedrich, Th. Walcher, Eur. Phys. J. A 17, 607 (2003).CrossRefADSGoogle Scholar
  7. 7.
    S. Weinberg, Physica A 96, 327 (1979).CrossRefADSGoogle Scholar
  8. 8.
    J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).CrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Gasser, M.E. Sainio, A. Švarc, Nucl. Phys. B 307, 779 (1988).ADSGoogle Scholar
  10. 10.
    S. Scherer, in Advances in Nuclear Physics, edited by J.W. Negele, E.W. Vogt, Vol. 27 (Kluwer Academic/Plenum Publishers, New York, 2003).Google Scholar
  11. 11.
    V. Bernard, N. Kaiser, J. Kambor, U.-G. Meißner, Nucl. Phys. B 388, 315 (1992).CrossRefADSGoogle Scholar
  12. 12.
    H.W. Fearing, R. Lewis, N. Mobed, S. Scherer, Phys. Rev. D 56, 1783 (1997).CrossRefADSGoogle Scholar
  13. 13.
    V. Bernard, H.W. Fearing, T.R. Hemmert, U.-G. Meißner, Nucl. Phys. A 635, 121 (1998)ADSGoogle Scholar
  14. 14.
    V. Bernard, N. Kaiser, U.-G. Meißner, Nucl. Phys. A 611, 429 (1996).ADSGoogle Scholar
  15. 15.
    N. Kaiser, Phys. Rev. C 68, 025202 (2003).ADSGoogle Scholar
  16. 16.
    T. Becher, H. Leutwyler, Eur. Phys. J. C 9, 643 (1999).CrossRefADSGoogle Scholar
  17. 17.
    T. Fuchs, J. Gegelia, G. Japaridze, S. Scherer, Phys. Rev. D 68, 056005 (2003). CrossRefADSGoogle Scholar
  18. 18.
    B. Kubis, U.-G. Meißner, Nucl. Phys. A 679, 698 (2001).ADSGoogle Scholar
  19. 19.
    T. Fuchs, J. Gegelia, S. Scherer, J. Phys. G 30, 1407 (2004).CrossRefADSGoogle Scholar
  20. 20.
    M.R. Schindler, J. Gegelia, S. Scherer, Nucl. Phys. B 682, 367 (2004).CrossRefADSzbMATHMathSciNetGoogle Scholar
  21. 21.
    M.R. Schindler, J. Gegelia, S. Scherer, Phys. Lett. B 586, 258 (2004).ADSGoogle Scholar
  22. 22.
    T. Fuchs, M.R. Schindler, J. Gegelia, S. Scherer, Phys. Lett. B 575, 11 (2003).ADSzbMATHGoogle Scholar
  23. 23.
    G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989).ADSGoogle Scholar
  24. 24.
    P. Mergell, U.-G. Meißner, D. Drechsel, Nucl. Phys. A 596, 367 (1996).ADSGoogle Scholar
  25. 25.
    H.W. Hammer, U.-G. Meißner, Eur. Phys. J. A 20, 469 (2004).CrossRefADSGoogle Scholar
  26. 26.
    N. Fettes, U.-G. Meißner, M. Mojžiš, S. Steininger, Ann. Phys. (N.Y.) 283, 273 (2000)CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut für KernphysikJohannes Gutenberg-UniversitätMainzGermany
  2. 2.High Energy Physics InstituteTbilisi State University, UniversityTbilisiGeorgia

Personalised recommendations