Advertisement

Covariant tensor formalism for partial-wave analyses of ψ decays into γB¯, γγV and ψ(2s)↦γχc0,1,2 with χc0,1,2↦K¯πand 2π+-

  • Sayipjamal Dulat
  • Bing-Song Zou
Original Article

Abstract.

With accumulation of high statistics data at BES and CLEO-c, many new interesting channels can get enough statistics for partial-wave analysis (PWA). Among them, ψ↦γp¯,γΛ¯,γΣ¯,γΞ¯ channels provide a good place for studying baryon-antibaryon interactions; the double radiative decays ψ↦γγV with V ≡ ρ,ω,φ have a potential to provide information on the flavor content of any meson resonances (R) with positive charge parity (C = +) and mass above 1 GeV through ψ↦γR↦γγV; ψ(2s)↦γχc0,1,2 with χc0,1,2K¯π+π- and 2π+- decays are good processes to study χcJ charmonium decays. Using the covariant tensor formalism, here we provide theoretical PWA formulae for these channels.

PACS.

13.20.Gd Leptonic, semileptonic, and radiative decays of mesons: Decays of J/ψ, ϒ, and other quarkonia 13.25.Gv Hadronic decays of mesons: Decays of J/ψ, ϒ, and other quarkonia 13.66.Bc Hadron production in e-e+ interactions 11.80.Et Partial-wave analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BES Collaboration, Phys. Rev. Lett. 91, 022001, (2003).Google Scholar
  2. 2.
    For example, B.S. Zou, H.C. Chiang, Phys. Rev. D 69, 034004 (2004)Google Scholar
  3. 3.
    F.E. Close, RAL-84-095, hep-ph/0311087Google Scholar
  4. 4.
    C. Edwards, PhD Thesis, Caltech preprint CALT-68-1165 (1985). Google Scholar
  5. 5.
    J.E. Augustin, Orsay preprint LAL/85-27 (1985).Google Scholar
  6. 6.
    D. Coffman, Phys. Rev. D 41, 1410 (1990).CrossRefADSGoogle Scholar
  7. 7.
    BES Collaboration, Nucl. Phys. A 675, 337 (2000).ADSGoogle Scholar
  8. 8.
    W. Rarita, J. Schwinger, Phys. Rev. 60, 61 (1941)CrossRefADSzbMATHGoogle Scholar
  9. 9.
    S.U. Chung, Phys. Rev. D 48, 1225 (1993)CrossRefADSGoogle Scholar
  10. 10.
    V. Filippini, A. Fontana, A. Rotondi, Phys. Rev. D 51, 2247 (1995).CrossRefADSGoogle Scholar
  11. 11.
    B.S. Zou, D.V. Bugg, Eur. Phys. J. A 16, 537 (2003).CrossRefADSGoogle Scholar
  12. 12.
    BES Collaboration, Phys. Lett. B 440, 217 (1998)ADSGoogle Scholar
  13. 13.
    V.V. Anisovich, D.V. Bugg, A.V. Sarantsev, Nucl. Phys. A 537, 501 (1992)ADSGoogle Scholar
  14. 14.
    A.V. Anisovich, Phys. Lett. B 452, 173Google Scholar
  15. 15.
    A.V. Anisovich, V.A. Sadovnikova, Eur. Phys. J. A 2, 199 (1998)ADSGoogle Scholar
  16. 16.
    Sayipjamal Dulat, Bing-Song Zou, Ji-Min Wu, High Energy Phys. Nucl. Phys. 28, 350 (2004).Google Scholar
  17. 17.
    F. von Hippel, C. Quigg, Phys. Rev. D 5, 624 (1972).ADSGoogle Scholar
  18. 18.
    W. Greiner, Quantum Chromodynamics (Springer, 2002) p. 242.Google Scholar
  19. 19.
    B.S. Zou, F. Hussain, Phys. Rev. C 67, 015204 (2003).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • Sayipjamal Dulat
    • 1
    • 2
  • Bing-Song Zou
    • 3
    • 1
  1. 1.Institute of High Energy PhysicsCASBeijingPRC
  2. 2.Department of PhysicsXinjiang UniversityUrumqiPRC
  3. 3.CCAST (World Laboratory)BeijingPRC

Personalised recommendations