Advertisement

E2 transitions between positive- and negative-parity states of the ground-state alternating-parity bands

  • T. M. Shneidman
  • R. V. JolosEmail author
  • R. Krücken
  • A. Aprahamian
  • D. Cline
  • J. R. Cooper
  • M. Cromaz
  • R. M. Clark
  • C. Hutter
  • A. O. Macchiavelli
  • W. Scheid
  • M. A. Stoyer
  • C. Y. Wu
Original Article

Abstract.

Experimental transition probabilities between states of the ground-state alternating-parity bands of 144Ba and their theoretical analysis are presented. Lifetimes of states in 144Ba have been measured using the recoil distance method following spontaneous fission of 252Cf. The experiment was performed at the Lawrence Berkeley National Laboratory employing the Gammasphere array and the New Yale Plunger Device. The experimental data show a significantly larger value of the E2 transition probability between the negative-parity states compared to the positive-parity ones. It is shown that this effect can be explained by a higher weight of the deformed component in the wave functions of the odd-I states. In the framework of the cluster approach it is explained by a higher weight of the alpha-cluster component in the wave function of the negative-parity states compared to the positive-parity ones. In the framework of the traditional collective model with the quadrupole and octupole degrees of freedom the same effect is explained by a higher value of the quadrupole deformation at the minima of the potential energy as a function of β20 and β30 compared to its value at the top of the barrier separating two physically equivalent minima, having opposite signs of the octupole deformation. Additionally, the dependence on parity of the E2 transition probability is analyzed qualitatively in nuclei with a minimum at β30 = 0 in the collective potential energy and compared to experimental data for 148Nd.

PACS.

21.60.Ev Collective models 21.60.Gx Cluster models 23.20.Js Multipole matrix elements 27.60.+j 90 ⩽ A ⩽ 149 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Ahmad, P.A. Butler, Annu. Rev. Nucl. Part. Sci. 43, 71 (1993).Google Scholar
  2. 2.
    P.A. Butler, W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996).Google Scholar
  3. 3.
    R.V. Jolos, P. von Brentano, Phys. Rev. C 49, R2301 (1994).Google Scholar
  4. 4.
    T.M. Shneidman, G.G. Adamian, N.V. Antonenko, R.V. Jolos, W. Scheid, Phys. Lett. B 526, 322 (2002).Google Scholar
  5. 5.
    T.M. Shneidman, G.G. Adamian, N.V. Antonenko, R.V. Jolos, W. Scheid, Phys. Rev. C 67, 014313 (2003).Google Scholar
  6. 6.
    F. Iachello, A.D. Jackson, Phys. Lett. B 108, 151 (1982).Google Scholar
  7. 7.
    R.V. Jolos, Yu.V. Palchikov, V.V. Pashkevich, A.V. Unzhakova, Nuovo Cimento A 110, 941 (1997).Google Scholar
  8. 8.
    R. Krücken, in Proceedings of the 11th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics - CGS11, Prague, Czech Republic, September 2002, edited by J. Kvasil, P. Cejnar, M. Krticka (World Scientific, Singapore, 2003) p. 128.Google Scholar
  9. 9.
    D.C. Biswas, Phys. Rev. C 71, 011301 (2005).Google Scholar
  10. 10.
    T.M. Shneidman, G.G. Adamian, N.V. Antonenko, S.P. Ivanova, W. Scheid, Nucl. Phys. A 671, 119 (2000).Google Scholar
  11. 11.
    R. Krücken, in Proceedings of the International Symposium on Advances in Nuclear Physics, Bucharest, Romania, December 1999, edited by D. Poenaru, S. Stoica (World Scientific, Singapore, 2000) p. 336.Google Scholar
  12. 12.
    I.Y. Lee, Nucl. Phys. A 520, 641c (1990).Google Scholar
  13. 13.
    C. Hutter, Phys. Rev. C 67, 054315 (2003).Google Scholar
  14. 14.
    M. Cromaz, T.J.M. Symons, G.J. Lane, I.Y. Lee, R.W. MacLeod, Nucl. Instrum. Methods A 462, 519 (2001).Google Scholar
  15. 15.
    A. Dewald, S. Harissopulos, P. von Brentano, Z. Phys. A 334, 163 (1989).Google Scholar
  16. 16.
    W. Urban, Nucl. Phys. A 613, 107 (1997).Google Scholar
  17. 17.
    G.G. Adamian, N.V. Antonenko, R.V. Jolos, S.P. Ivanova, O.I. Melnikova, Int. J. Mod. Phys. E 5, 191 (1996).Google Scholar
  18. 18.
    A.B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley, NY, 1967). Google Scholar
  19. 19.
    G.G. Adamian, N.V. Antonenko, R.V. Jolos, Nucl. Phys. A 584, 205 (1995).Google Scholar
  20. 20.
    J. Dudek, Prog. Part. Nucl. Phys. 28, 131 (1992).Google Scholar
  21. 21.
    W.R. Phillips, I. Ahmad, H. Emling, R. Holzmann, R.V.F. Janssens, T.L. Khoo, M.W. Drigert, Phys. Rev. Lett. 57, 3257 (1986).Google Scholar
  22. 22.
    S. Raman, C.W. Nestor jr., P. Tikkanen, At. Data Nucl. Data Table 78, 1 (2001).Google Scholar
  23. 23.
    R. Krücken, Phys. Rev. C 64, 017305 (2001).Google Scholar
  24. 24.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 2 (Benjamin, 1975).Google Scholar
  25. 25.
    M. Nomura, Phys. Lett. B 55, 357 (1975).Google Scholar
  26. 26.
    D.R. Zolnowski, T. Kishimoto, Y. Gono, T.T. Sugihara, Phys. Lett. B 55, 453 (1975).Google Scholar
  27. 27.
    R. Ibbotson, Phys. Rev. Lett. 71, 1990 (1993).Google Scholar
  28. 28.
    R.W. Ibbotson, Nucl. Phys. A 619, 213 (1997).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • T. M. Shneidman
    • 1
  • R. V. Jolos
    • 1
    • 2
    Email author
  • R. Krücken
    • 3
    • 4
  • A. Aprahamian
    • 5
  • D. Cline
    • 6
  • J. R. Cooper
    • 4
  • M. Cromaz
    • 7
  • R. M. Clark
    • 7
  • C. Hutter
    • 4
  • A. O. Macchiavelli
    • 7
  • W. Scheid
    • 2
  • M. A. Stoyer
    • 8
  • C. Y. Wu
    • 5
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institut für Theoretische PhysikJustus-Liebig-Universität GiessenGiessenGermany
  3. 3.Physik Department E12Technische Universität MünchenGarchingGermany
  4. 4.A.W. Wright Nuclear Structure LaboratoryYale UniversityNew HavenUSA
  5. 5.Nuclear Structure LaboratoryUniversity of Notre DameNotre DameUSA
  6. 6.Nuclear Structure Research LaboratoryUniversity of RochesterRochesterUSA
  7. 7.Nuclear Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  8. 8.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations